

JGo
TM
 for SWT

Graphical Object Editor Classes

User Guide

This guide provides information on using the com.nwoods.jgo package Version 5.5, for use

with Java and the Eclipse platform’s Standard Widget Toolkit, SWT.

September 2012

Northwoods Software Corporation
142 Main St.

Nashua, NH 03060

http://www.nwoods.com/go

mailto:JGo@nwoods.com

http://www.nwoods.com/go/
mailto:JGo@nwoods.com

JGo User Guide

ii

Copyright © 1999-2012 Northwoods Software Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise without the prior written permission of the publisher.

Northwoods Software Corporation makes no representations that the use of its products in the

manner described in this publication will not infringe on existing or future patent rights, nor do

the descriptions contained in this publication imply the granting of licenses to make, use, or sell

equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only

pursuant to a valid written license from Northwoods or an authorized sublicensor.

Neither Northwoods Software Corporation nor its employees are responsible for any errors that

may appear in this publication. The information in this publication is subject to change without

notice.

The following are trademarks of Northwoods Software Corporation: Northwoods, JGo, GO++,

GoDiagram, GoLayout, GoInstruments, Sanscript, Flowgram, the Northwoods logo, and Fully

Visual Programming.

The following are third-party trademarks:

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,

Inc. in the U.S. and other countries.

All other trademarks and registered trademarks are property of their respective holders.

 iii

CONTENTS
Preface ..1

1. Introduction ..2

2. JGo Concepts ..3
Design Philosophy ...3
Documents ...3
Views ...4
Graphical Objects ..5
Selection ..6
Grouping ..6
Graphs ...7
A Minimal Application ..7

3. JGoDocument and JGoObject Details ..9
JGoDocument ..9
JGoObject ... 13
JGoDrawable .. 16
JGoText .. 16
JGoImage ... 18
JGoArea .. 19
JGoPort ... 21
JGoLink ... 23

4. JGoView Details.. 28
Display .. 29
Events ... 30
User Editing .. 36

5. Nodes ... 39
JGoBasicNode .. 40
JGoIconicNode ... 41
JGoTextNode .. 43
JGoSubGraph ... 44
SimpleNode .. 45
GeneralNode .. 46
MultiPortNode ... 46
MultiTextNode ... 47
ListArea ... 48
RecordNode .. 48
Comment .. 49
General Concepts When Defining Nodes ... 49

6. Undo and Redo ... 51
UndoableEdit and JGoDocumentChangedEdit .. 51
JGoUndoManager, CompoundEdits and Transactions .. 57
Defining Menu Commands ... 59

7. Performance Hints ... 61

8. JGo Support for XML and SVG ... 62
SVG Support using Batik and SVGGoView .. 62
XML and SVG Support Using JAXP and the JGo SVG Package 63
Custom XML Support Using JAXP ... 66

9. Building a Sample Application Using JGo Beans ... 69
Register the JGo Beans with the Development Environment 70
Visually Construct the User Interface ... 70
Add Event Listeners .. 73

JGo User Guide

iv

Customize the Palette ... 77
Add Clipboard Support ... 80
Add Undo/Redo Support ... 82
Add Auto-layout Support ... 84
Add XML/SVG Serialization Support .. 86

1

PREFACE

Purpose of this guide

This guide provides an overview of JGo. All of the classes are part of the

com.nwoods.jgo or com.nwoods.jgo.svg packages.

For more detailed information about the classes and members in the JGo package, see the

JGo Class Reference Guide, a set of HTML pages generated by JavaDoc.

This guide also uses as examples some of the code provided in the

com.nwoods.jgo.examples package or its subpackages.

Who should use this guide

This guide is intended for application programmers using Java to build SWT

applications. Familiarity with Java and SWT is assumed.

Structure of this guide

This guide is organized as follows:

 Introduction– summarizes the capabilities of the JGo software.

 JGo Concepts– describes the overall design of the JGo classes.

 JGoDocument and JGoObject Details– describes the details of the JGo model

classes.

 JGoView Details– describes the details of screen updating and input handling.

 Nodes—describe the many kinds of nodes that come with JGo.

 Undo and Redo– describes what you need to do to support undo and redo

 Performance Hints– suggestions for how to avoid some performance bottlenecks

Other Guides

Another package, com.nwoods.jgo.layout, provides sophisticated layout algorithms for

nodes in graphs. The layout package is licensed and documented separately.

JGo User Guide

2

1. INTRODUCTION

The JGo package, com.nwoods.jgo, is a set of classes built on the Java platform, using

SWT without using AWT, Java2D, or Swing. JGo makes it easy to deliver user

interfaces that allow users to see and manipulate diagrams of two-dimensional graphical

objects arranged in a scrollable, zoomable window. You can use JGo to build stand-

alone SWT applications, without depending on Eclipse.

JGo depends on SWT version 3.2 or later.

JGo provides a variety of basic graphical objects such as rectangles, ellipses, polygons,

text, images, and lines. You can group objects together to form more complex objects.

You can customize their appearances and behaviors by setting properties and overriding

methods.

A JGo view is a control that displays a JGo document. It supports mouse-based object

manipulation, including selecting, resizing, moving and copying using drag-and-drop. A

JGo view also supports in-place editing, printing, and grids.

A JGo document implements a model that supports manipulation of objects. Adding an

object to the document makes it visible in the document’s views. You can organize

objects in layers. JGo provides support for composing and manipulating graphs (node &

arc diagrams), where nodes have ports that are connected by links.

The JGo library is flexible and extensible. Many predefined example node classes make it

easy to build many kinds of diagrams. You can easily customize most objects for

application-specific purposes by setting properties or by subclassing. You can add

completely new graphical objects to the existing framework.

JGo is written entirely in portable Java source code. It only depends on the standard Java

and SWT packages and does not explicitly call any native functions.

JGo contains very few user-visible text strings. You can easily localize your JGo

application by setting one class’s array of strings.

The com.nwoods.jgo.svg package is included with JGo and provides classes to enable

serialization of JGoDocuments to and from XML documents. The XML document

format used is an extension of the SVG (Scalable Vector Graphics) XML document type.

JGoDocuments can be saved and faithfully restored in this format and can also be viewed

with standard SVG viewers (however SVG files generated by other tools cannot

necessarily be faithfully read by JGo). Refer to the “Serialization” section of

“JGoDocument” in the “ JGoDocument and JGoObject Details” chapter for more

information on this topic, and to Chapter 8.

3

2. JGO CONCEPTS

This guide assumes you are already familiar with the Java platform and SWT. JGo builds

directly on this framework, so understanding them is a prerequisite for understanding

JGo. Most JGo classes follow the convention of using "JGo" in their name (e.g.,

JGoView). JGo also provides partial implementation of some other classes that it uses

from the Java2 (AWT/Java2D/Swing) world, such as Dimension and Graphics2D for

maximizing source-code compatibility with JGo for Swing. Any other class names in

this document are Java classes (e.g., org.eclipse.swt.graphics.Point) or part of the

samples.

Although property names in Java technically should start with a lower-case letter, in this

document they are often capitalized for clarity.

Design Philosophy

JGo has been designed to be high performance, easy to use and flexible enough to meet a

large array of requirements. We have extended SWT in as straight forward a method as

possible, because that minimizes the learning curve and also minimizes compatibility

problems with new releases of Java.

While JGo does not provide every last feature you may need, we strive to provide hooks

in the right places so that you can write all your code in your derived objects without

modifying JGo. We consider it a misfeature of JGo if there is something you can’t

achieve without modifying the JGo sources.

Documents

JGo uses the model-view-controller architecture. JGoDocument serves as the model, i.e.

a container providing the abstract representation of the things the user may see in a view.

Documents provide the runtime storage for the displayable objects. A document is the

object that contains the list of layers of graphical objects to be displayed in one or more

views. When you want to have a graphical object appear to the user, you create it, make

sure it has a reasonable size and position and any other properties you care about, and

then add it to a document’s layer.

Class JGoDocument extends Object, so a document and its objects do not depend on the

existence of a window. Each document has a list of JGoLayer instances. JGoLayer

implements JGoObjectCollection, i.e. a list of JGoObjects. The graphical objects that a

document layer contains are instances of subclasses of JGoObject. For convenience,

JGoDocument also implements JGoObjectCollection, treating all of the objects in all of

its layers as one long list of objects.

JGo User Guide

4

Each document has a number of properties that affect its appearance and behavior. These

include properties such as paper color and whether the user can modify the document.

When a JGoDocument is modified, it fires JGoDocumentEvents by notifying all

registered JGoDocumentListeners of all changes to the document, to its layers, or to any

of its objects.

Views

Views provide a window on the graphical objects stored in a document. A view defines

how the user sees the objects and interacts with them. Each view is a

JGoDocumentListener of the document being viewed so that it can keep its window up-

to-date with all of the objects in the document.

Class JGoView extends org.eclipse.swt.widgets.Composite and provides the basic

functionality of displaying objects in layers, with an optional background grid or image:

If you need a read-only collection of objects that are laid out in a grid to be selected and

dragged by the user into another view, use the JGoPalette class:

If you need a reduced-scale view of a different view that allows the user to pan that other

view, use the JGoOverview class:

JGo Concepts

The JGo Package 5 Copyright Northwoods Software

JGoView, in conjunction with the graphical objects, provides a default user interaction

style that is consistent with standard usability guidelines for selection, moving, resizing

and other user interactions. However, user interactions defined by JGoView and the

objects themselves are highly customizable. Some of this customization is achieved via

properties on the objects. Much customization can be accomplished by registering

JGoDocumentListeners on the document and JGoViewListeners on the view. More

powerful customization can be achieved through the subclassing of the JGoView and

JGoObjects and overriding member functions.

JGoView fires JGoViewEvents for interactive user actions such as selecting or clicking

on objects or in the background, and for programmatic changes to view properties.

Graphical Objects

All graphical objects in JGo are derived from JGoObject, which in turn is derived from

Java’s Object.

JGoObject defines the basics of a graphical object: a bounding rectangle, mechanisms

for controlling the size and location of the object, and the common properties Visible,

Selectable, Resizable and Draggable. JGoObject defines its own paint method that

defines the appearance of that object. Thus the full power of SWT is available for

drawing your custom objects, if you really need it. Furthermore, JGo has extended the

drawing capabilities of SWT to support coordinate translation/scaling for all objects and

Bezier curves for JGoStrokes.

The simplest way to think about JGoObject is that it is a rectangular area that knows

how to draw itself into a view. In fact, in many cases of creating a new simple object, the

only code you need to write is the paint method. For example, here is the only significant

code in JGoRectangle:

public void paint(Graphics2D g, JGoView view)

{

 Rectangle rect = getBoundingRect();

 drawRect(g, rect.x, rect.y, rect.width, rect.height);

}

There are three kinds of primitive JGoObjects:

 Drawable shapes, such as rectangles, ellipses and strokes. Each JGoDrawable

instance can have a pen for drawing the outline of the shape and a brush for

painting (filling) the inside of the shape.

JGo User Guide

6

 Text, in various fonts, sizes and colors. JGoText objects also support multiple

lines, wrapping and in-place editing.

 Images, for various kinds of images such as JPEGs and GIFs. JGoImage objects

can get their image information from files or URLs, either on disk, across the net,

or in a JAR file.

JGoObject provides numerous hooks so that custom derived objects can provide exactly

the desired look and feel. More information is provided in the next chapter.

Selection

The JGoSelection class is used by a view to maintain a separate list of the objects

selected. Each view has its own selection. In addition, the selection class notifies objects

of gaining and losing selection events, and has support (in conjunction with JGoObject)

for the appearance of a selected object. Objects can define their own selection appearance

or use the default provided by the JGoObject and JGoSelection classes. Normally

JGoSelection uses a class called JGoHandle, which is derived from JGoRectangle, to

make selection handles appear on the screen.

The following illustration shows the default selection appearance for resizable and non-

resizable objects. Also note that, by default, the primary selection color is green and the

secondary selection color is blue-green. These properties can be set in JGoView.

JGoView has some useful methods for manipulating the selection: adding objects to the

selection and moving or deleting the selected objects.

Selection appearance for resizable and non-resizable objects

 Grouping

JGo provides two ways of making groups of objects: areas and layers. Areas provide a

way of making a single “object” out of other objects. Layers are a way of viewing

multiple collections of objects in a document.

JGoArea is a JGoObject that contains other objects within its bounding rectangle.

JGoArea in many ways acts like a document, because objects can be added or removed

from it, and the stacking (painting) order within the area can be changed. JGoArea can

contain any object that is derived from JGoObject. Since JGoArea is itself derived from

JGoObject, areas can contain other areas, to any depth.

An object that does not have a parent area is called a “top-level” object. The objects in

an area are often called its children. Removing a group from a document effectively

causes the group’s children to disappear also.

JGo Concepts

The JGo Package 7 Copyright Northwoods Software

Several very commonly used areas that implement “nodes” with “ports” are provided in

the JGo package, such as JGoBasicNode and JGoTextNode. Many other area and node

classes are provided in the examples subdirectory.

JGoLayer is a collection of top-level JGoObjects held by a JGoDocument. Layers are

just a way to split up the list of objects owned by a document. Each document starts off

with one layer. You can add and remove layers from a document. You can also change

the order of the layers in a document, thereby making potentially many objects all over

the document appear in front of or behind other collections of objects. Furthermore you

can affect the visibility and transparency of all of those objects in a layer all at once.

Unlike JGoArea, JGoLayer does not extend JGoObject, so one cannot have layers

within layers. Each JGoObject can belong to at most one layer at a time.

Graphs

One of the principal uses of JGo is to make it easy to build applications where users can

see and manipulate graphs of nodes connected by links. JGo provides this functionality

with the JGoNode, JGoPort and JGoLink classes. Nodes contain one or more ports.

Links connect two ports.

The example classes provide some pre-built implementations of useful nodes. You can

extend them easily if you need to customize their appearance or behavior.

The sample apps provide some pre-built implementations of graphical browsers and

editors.

A Minimal Application

A very basic use of JGo is provided in the examples directory, MinimalApp.java.

All of the interesting JGo code is in the init method:

 private JGoView myView;

 public MinimalApp(Shell shell) {

 myView = new JGoView(shell, SWT.V_SCROLL | SWT.H_SCROLL);

 }

 public void init() { // only here do we anything JGo specific

JGo User Guide

8

 // add JGoObjects to the document, not to the view

 JGoDocument doc = myView.getDocument();

 // create two nodes for fun...

 JGoBasicNode node1 = new JGoBasicNode("first");

 // specify position

 node1.setLocation(new Point(100, 100));

 // specify color

 node1.setBrush(JGoBrush.blue);

 // add to the document

 doc.addObjectAtTail(node1);

 JGoBasicNode node2 = new JGoBasicNode("second");

 node2.setLocation(new Point(200, 100));

 node2.setBrush(JGoBrush.magenta);

 doc.addObjectAtTail(node2);

 }

This minimal application just puts up two JGoBasicNodes of different colors. The user

can link them together, select the nodes and/or link(s), move them around, or copy them.

JGo provides all of this functionality automatically.

JGoDocument and JGoObject Details

The JGo Package 9 Copyright Northwoods Software

3. JGODOCUMENT AND JGOOBJECT DETAILS

JGoDocument

JGoDocument represents a group of JGoObjects that can be displayed by a JGoView.

JGoDocument represents the model in the model-view-controller architecture; JGoView

plays the role of the view and as a default controller.

A document should be thought of as an ordered list of objects. The objects are drawn in

sequential order, so objects at the beginning of the list appear "behind" objects that are at

the end. You can add, remove, and iterate over the document's objects by using the

document's implementation of the JGoObjectCollection interface

In addition to all of the objects held by the document, the document has its own notion of

the background color, called the paper color. This is independent of the JGoView (i.e.

Control) background color, which affects the view's border and which is used as the

background when the document’s paper color is null.

JGoDocument also supports undo and redo by cooperating with a JGoUndoManager

that listens for and records changes to the document.

Layers

The ordered list of objects is actually partitioned into sublists by the use of JGoLayer

instances. Although you normally think of a document as owning the objects in it,

actually a document directly owns an ordered list of layers. Each layer in turn owns an

ordered list of objects.

When you have created an instance of a JGoObject, you’ll want to add it to a document

by calling the JGoDocument addObjectAtTail or addObjectAtHead methods. The

former method places the new object in front of all other document objects; the latter

places it behind all others. If you are making use of layers, once you have decided the

layer in which to put the new object, you can call the same methods on the layer instead.

You can “move” an object from one layer to another by calling these methods too.

Initially a document has one layer. Each document has a notion of the default layer in

which a view may create new objects if the exact layer is not explicitly specified.

Each document also has a property referring to the layer that by default holds links. It is

moderately common to create a separate layer for links, to display all links either in front

of the default layer or behind the default layer that presumably holds all of the nodes.

JGo User Guide

10

Initially, since there is only one document layer, the value of getLinksLayer() is the

same as the value of getDefaultLayer().

You may find it convenient when adding JGoObjects programmatically to your

document to call the JGoDocument.add method. This method automatically adds the

object at the tail end of the links layer if the object is a link; otherwise it adds it at the tail

end of the default layer.

The removeAll method removes all JGoObjects from the document without removing

any layers. The deleteContents method removes all objects and layers. But you might

find it easier to just throw away the old JGoDocument and create and initialize a new

one instead of trying to re-initialize the old one.

Document Coordinates and Size

The JGoObjects held in the document each have a size and position. The coordinate

system used by the document comes from the default coordinate system for components,

i.e. positive coordinates increase rightwards and downwards and each unit corresponds to

a pixel. JGoViews have a coordinate system that may be translated and scaled from that

of the document, so as to support panning and zooming.

The document's size is automatically expanded to encompass all of its objects. Normally

a document has all of its objects at positive coordinates (i.e., the lower right quadrant).

However, if there are objects with negative coordinates, the documentTopLeft property

will indicate the actual “origin” with a negative X and/or Y value. This property

combined with the documentSize property gives the full extent of all of the objects in the

document. It is possible to set either of these properties, but by default they will

automatically get re-set as existing objects are moved or resized or as new objects are

added. However the document’s size does not automatically contract as objects are

moved or removed. JGoDocument.updateDocumentSize is called when an object’s

bounding rectangle is changed; you can override that method to implement your own

policies regarding document size and top-left position.

Events

The document keeps track of all registered JGoDocumentListeners. JGoView is a

predefined implementer of JGoDocumentListener. It needs to notice when document

objects change so that it can update the visible rendering of those objects. You can

register your own listeners to notice changes to the document or its objects. The

fireUpdate method actually does the notification of all document listeners.

JGoDocumentEvent is the class that represents an event for a document; it extends

java.util.EventObject. Besides remembering which document the event occurred for, it

also remembers the kind of event and the previous state, if appropriate. The kinds of

events include such things as a JGoObject being INSERTED, REMOVED, or

CHANGED. For some kinds of events, there is additional information that further

describes the event. In particular, the CHANGED event has an object specific sub-hint

describing the exact kind of change and a previous value.

In the Demo1 example we only show arrowheads at the “to” port of links connected to

the ports of JGoBasicNodes. One way of achieving that effect is to notice when links

JGoDocument and JGoObject Details

The JGo Package 11 Copyright Northwoods Software

get created in the document, and making sure they have the appropriate arrowheads or

other desired characteristics.

 . . .

 myDoc.addDocumentListener(new JGoDocumentListener() {

 public void documentChanged(JGoDocumentEvent e) {

 processDocChange(e);

 }

 });

 public void processDocChange(JGoDocumentEvent e)

 {

 switch(e.getHint()) {

 case JGoDocumentEvent.INSERTED:

 if (e.getJGoObject() instanceof JGoLink) {

 // make sure each link has an arrowhead at its front,

 // if the "to" port is a basic node port

 JGoLink link = (JGoLink)e.getJGoObject();

 JGoPort port = link.getToPort();

 if (port != null &&

 port.getParent() instanceof JGoBasicNode) {

 // only have an arrowhead at the "to" end

 link.setArrowHeads(false, true);

 }

 // if the link connects ports on different classes,

 // highlight it in red

 if (link.getFromPort() != null &&

 port.getClass() != link.getFromPort().getClass()) {

 link.setHighlight(JGoPen.make(JGoPen.SOLID,

 link.getPen().getWidth()+4,

 JGoBrush.ColorRed));

 }

 break;

 }

 }

Instead of adding a document listener, an alternate way to get notification of events from

a JGoDocument is to create a subclass of JGoView and override the

documentChanged method, since each view is also a document listener.

Note that this code will be called whenever any object is programmatically added to the

document, not just when users interactively draw a new link. If you just want this to

happen when the user interactively draws a new link, implement a JGoViewListener to

look for the JGoViewEvent.LINK_CREATED case, or override JGoView.newLink.

JGo User Guide

12

Copying

You can add a copy of a collection of objects to a document by calling

copyFromCollection. The way objects are copied is controlled by the

JGoObject.copyObject methods of all the copied objects and by the

JGoCopyEnvironment. The JGoCopyEnvironment also holds the results of the

copying.

If you just want to add a copy of a single object to a document, call addCopy.

Serialization and Persistence

JGoDocument and JGoObject implement Serializable. Serialization is used by the

default drag-and-drop mechanism and by copy-and-paste.

Serialized objects will not be compatible with future JGo releases. Thus you should not

use the standard Java serialization mechanism to implement long-term storage of

documents or collections of objects.

For long-term persistence, you may wish to read and write into your own existing

database or file format. In this case, your JGoDocument subclass, and perhaps your

JGoObject subclasses, will be responsible for transforming the real information into a

network of JGoObjects. Any user driven or programmatic changes to these objects must

then be transformed back into the database’s representation of the information. The

document will also have to act as a listener for any independent changes to the underlying

database, if that is supported.

Alternatively, if the format of your serialized data is not predetermined, serialization to

and from XML can be easily provided by the com.nwoods.jgo.svg package. Details are

provided in Chapter 8.

You may find it helpful to turn on the JGoDocument property MaintainsPartID, which

automatically assigns a unique integer value to each JGoIdentifiablePart that is added to

the document. JGoNode, JGoLink, and JGoPort all implement JGoIdentifiablePart,

so you could use the PartID of ports to be able to identify which ports each link

connects, and to identify other references to nodes or links. The example class,

Comment, also implements JGoIdentifiablePart, so that it is easy to store and update

such comment objects.

Navigating Documents

Frequently you will want to iterate over all of the objects in a document or in a layer,

perhaps just to find and operate on a certain subset of the objects. Because

JGoDocument and JGoLayer and JGoArea implement JGoObjectSimpleCollection,

you can easily walk the list of objects as follows:

 JGoListPosition pos = myDoc.getFirstObjectPos();

 while (pos != null) {

 JGoObject obj = myDoc.getObjectAtPos(pos);

 pos = myDoc.getNextObjectPosAtTop(pos);

 if (obj instanceof MyNode) {

 MyNode n = (MyNode)obj;

 // do something with MyNode n

 }

JGoDocument and JGoObject Details

The JGo Package 13 Copyright Northwoods Software

 }

Of course you can check for other classes too, such as JGoLink. And you can replace

“myDoc” with a layer or an area to iterate over the objects in those collections.

Controlling Link Creation By the User

JGoDocument has a property, ValidCycle, that controls whether users are allowed to

draw links between nodes that might cause cycles or loops in the graph, or that would

violate a tree-structure, seen abstractly. This property is observed by the validLink

predicate of JGoPort. More information is provided in the description of ports on page

22.

JGoObject

JGoObject is the superclass of all objects that can be contained in a JGoDocument

(JGoLayer) or a JGoView and that can be displayed in a view.

JGoObjects are efficient; if SWT controls are considered heavyweight, JGoObjects are

flyweight.

Bounding Rectangle and Location

Each object has a size and a position, in document coordinates. There are many methods

for getting and setting the bounding rectangle for the object, or for just the Left, Top,

Width, or Height properties. All ultimately go through the basic getBoundingRect and

setBoundingRect methods.

Although normally one can think of the location of an object being the same as the top-

left corner, that may not be natural for some objects. Thus each object has its own notion

of Location; by default this is the same as the top-left. For example, JGoText overrides

getLocation and setLocation to use the text alignment in determining the natural

position of the object.

Note that when the location is not the same as the top-left position, the order of setting

the Location and the Size of an object may matter. This is because setting the size of an

object is likely to cause the location to change. You may want to use (and override if

appropriate) the setSizeKeepingLocation method.

There are a number of convenience methods for dealing with the standard nine spots of

an object (corners, sides, and center), and for repositioning two objects so that their

particular user-specified spots coincide. See getSpotLocation, setSpotLocation, and

setSpotLocationOffset. The standard spots are:

 Center

 TopLeft

 TopCenter

 TopRight

 RightCenter

 BottomRight

JGo User Guide

14

 BottomCenter

 BottomLeft

 LeftCenter

The spot locations are also used to identify the standard handles. There are also NoSpot

and NoHandle values for situations where is no particular spot or handle.

Ownership

Most JGoObjects should either belong directly to a JGoDocument (actually a

JGoLayer) as a top-level document object, or to a JGoArea that belongs to a

document/layer. In either case getDocument returns this document and getLayer returns

the layer within the document; for children of areas, getParent will return that JGoArea

instead of null.

Occasionally some objects will properly belong to a JGoView instead of to a

JGoDocument, because they really represent part of the "view" of the document and not

of the document itself. Predefined cases include selection handles and the in-place text

editor. The size and position of view objects are in document coordinates.

Whenever any object is added or removed from a document or a view, the appropriate

INSERTED or REMOVED event is fired for all listeners.

Events

As you define your own subclasses, you can define customized default behaviors for

responding to various events. JGoObjects do not have their own listeners and events

because it is assumed that most of the objects of a certain class in a graph want to behave

the same way. This is unlike the situation where one expects to add controls to a dialog

without subclassing and yet have radically different behaviors for each one.

The standard "event" handling methods are:

 geometryChange - the object has changed size and/or position

 geometryChangeChild - a child object has changed size and/or position

 handleResize - the user is reshaping this object interactively

 ownerChange - the object has just been added or removed from a document or

view

 paint - render this object through a Graphics2D if the object isVisible(); if you

override this method to draw beyond the bounding rectangle, be sure to override

expandRectByPenWidth

 doMouseClick - the user just clicked on this object

 doMouseDblClick - the user just double-clicked on this object

 doUncapturedMouseMove - the user just passed the mouse over this object

without any mouse down

 gainedSelection - this object just got added to some view's selection

JGoDocument and JGoObject Details

The JGo Package 15 Copyright Northwoods Software

 lostSelection - this object just got removed from some view's selection

 redirectSelection - this object is about to be selected; maybe select something

else

 getToolTipText - return a string to display in a tool tip

Properties

In addition to the bounding rectangle and the location, each object has a number of

boolean properties:

 Visible – can this object be seen in a view

 Selectable – can the user select this object in a view

 Draggable – can the user move this object in a view

 Resizable – can the user reshape this object in a view

 4ResizeHandles – does this object only have corner selection handles

 AutoRescale – whether resizing a parent area will resize this object

 DragsNode – whether this selected object, when moved, should move the top-

level parent object instead

 PickableBackground – for areas, whether the area (if selectable) should become

selected if picking in the area but not on a child object

 BoundingRectInvalid – whether to call computeBoundingRect to get a new

bounding rectangle

 Initializing – normally used by areas to indicate that the area is being

constructed or copied, to avoid repeated expensive calculations, such as in

JGoArea.layoutChildren

 SuspendUpdates – should the object temporarily skip notifying listeners

 SkipsUndoManager – like SuspendUpdates, but instructs only the undo

manager to stop recording information from events for this object; other updates,

such as for the view’s display, proceed normally

Remember that properties such as Selectable and Resizable just control the standard

built-in behavior that JGo views allow the user to do interactively using the mouse. You

can always select or resize objects programmatically, regardless of these property values,

by explicitly calling methods such as JGoView.getSelection().extendSelection(o) and

JGoObject.setSize(w,h).

When an object’s property changes, a CHANGED document event is sent to all

document listeners. As you define subclasses with additional properties or other state,

you will need to remember to make such notifications. It is easiest to call the

JGoObject.update method after the object's state changes, because it can take care of the

notification details for you.

A CHANGED document event has a flags/hint value which is useful in identifying the

kind of change that occurred. For example, a call to JGoObject.setVisible will result in

JGo User Guide

16

a call to JGoObject.update with a hint of ChangedVisible. This additional

discrimination is important for optimizing update behavior and supporting undo and redo.

If you want to make a copy of a single object without adding it to a JGoDocument, you

can call the copy method. (If you do want to add a copy to a document, call

JGoDocument.addCopy.)

As you add fields to your subclasses, you will want to make sure the fields are copied

appropriately when the object is copied by overriding copyObject. Because JGoObject

implements Serializable, you will need to make sure all and only those fields that are

needed to be serialized are not declared transient, or you will need to define

writeObject and readObject.

In addition, if you want to support undo and redo, you will need to make sure your

subclass also handles new properties correctly in the copyNewValueForRedo and

changeValue methods. See the chapter about undo and redo for more details.

JGoDrawable

The principal subclasses of JGoObject include JGoDrawable, JGoText, JGoImage,

and JGoArea. These are discussed in the following sections.

Drawable shapes include both closed and filled two-dimensional objects and unfilled

(linear) objects such as JGoStrokes. Strokes are multi-segmented straight or curved

lines. Strokes can also have arrowheads.

Most drawables, though, are things like rectangles, rounded rectangles, ellipses and

polygons.

Each JGoDrawable has a pen (JGoPen) and a brush (JGoBrush) to specify how to

draw the outline of the drawable shape and how to paint the inside of the shape. There

are a few predefined pen and brush values that are static values in the JGoPen and

JGoBrush classes. Pens and brushes are considered immutable objects, so you can

freely share them among multiple JGoObjects.

You can also construct your own JGoPen and JGoBrush values. This is useful when

you want a thicker pen or a dotted pen.

If you define your own drawable class, you will probably need to consider overriding at

least the following methods: paint, expandRectByPenWidth, isPointInObj, and

getNearestIntersectionPoint.

JGoText

The JGoText class displays text strings. There are many properties that help determine

the appearance and behavior of a JGoText object:

 Text – the string to be displayed

 FaceName – the string name of the font family to be used; the default is
"SansSerif"

 FontSize – the point size specifying the height and width of the characters; the

default is 12

JGoDocument and JGoObject Details

The JGo Package 17 Copyright Northwoods Software

 Alignment – how each line of text is aligned within the whole text object; the

default is ALIGN_LEFT; this also determines the Location for the object

 TextColor – the color for the characters; the default is Color.black

 BkColor – the color for the background behind the text; the default is

Color.white

 Transparent – if true, the background color (BkColor) is not painted; otherwise

the whole text object is filled with the background color

 Bold – whether the text is in a bold style

 Italic – whether the text is in an italicized style

 Multiline – whether embedded newline characters force a line break in the

display of the text string, or whether line wrapping takes place

 Clipping – whether the text drawing is clipped to the bounds of the text object;

for speed this defaults to false

 AutoResize – whether the size of the text object is automatically adjusted as the

text string is changed

 2DScale – whether the user can resize a text object horizontally as well as

vertically

 Editable – whether double-clicking or clicking on the text object causes the view

to bring up a text field or text area editor for the user to edit-in-place.

 EditOnSingleClick – by default if the text object is Editable, double clicking

starts editing-in-place; when this property is true, only a single click is needed.

For

 SelectBackground – whether selecting a text object causes the background to be

displayed (Transparent set to false) instead of getting selection handle(s) as

most objects normally do

 Wrapping – whether to automatically insert line breaks even when there is no

newline character embedded in the string; Multiline must also be true for

wrapping to take place, and any embedded newline characters are ignored

 WrappingWidth – when Wrapping is true, specifies the width at which text

will be wrapped to the next line, in document coordinates

When a JGoText object is constructed, the FaceName and FontSize properties default to

the values of the static properties JGoText.getDefaultFontFaceName() and

JGoText.getDefaultFontSize(). By default, text objects are not Resizable. They

support only single lines of text and do not wrap or clip.

The AutoResize property, which defaults to true, causes the text string to be remeasured

each time the string value is changed and the bounding rectangle to be updated

accordingly. The Location (as determined by the Alignment) will stay the same, but the

width and height will match the dimensions of that text string, in the given font and style.

If you set AutoResize to false or if you explicitly change the Size of the text object, you

run the risk of painting beyond the bounds of the text object, which will result in

JGo User Guide

18

improper updates of the view. In this case it is wise to set the Clipping property to be

true, to make sure that the text is not drawn beyond the bounds of the object. The

Clipping property defaults to false for performance reasons.

The SelectBackground property determines how a selected text object appears by

controlling the transparency of the text’s background instead of adding selection handles.

For improved performance the paint method calls the paintGreek method to allow it to

decide on simpler renditions of the text at small scales. The standard implementation

uses the static JGoText.getPaintNothingScale() and JGoText.getPaintGreekScale()

properties to decide if the text should be painted at all or if it should just be drawn as a

single line.

Users can edit text in-place. If the Editable property is true, then a double click (or a

single click if EditOnSingleClick is true) on the text object will invoke doBeginEdit to

create and display a JTextField or a JTextArea component. The Multiline and

Wrapping properties determine the behavior of the Enter key. When Multiline is true

and Wrapping is false, the text editing component accepts the Enter key as inserting a

newline; when Multiline is false, the Enter key calls doEndEdit to finish editing,

resulting in a modified Text string value. In either case the Escape key calls doEndEdit

without changing the string value.

JGoImage

The JGoImage class displays images, including GIF files and JPEG files. The images

can be kept as separate files or stored as a resource, referred to by a disk pathname or by

a URL.

Properties:

 Image – the underlying Image object

 Filename – the file pathname from which the image is loaded; null if the URL is

used instead

 URL – the URL from which the image is loaded; null if the Filename is used

instead

 TransparentColor – the Color that is to be drawn instead of a transparent

background for the image; this defaults to null, so that images will show

transparent backgrounds naturally

 NaturalSize – the unstretched dimensions of the Image, independent of the

dimensions of the JGoImage object that you may have assigned

Initially a JGoImage instance will have no Image to display, and thus will appear empty.

You can assign an image by calling one of the three overloaded methods named

loadImage, taking Image, String, or URL as a first argument. For convenience in

dealing with “relative” paths using URLs, the loadImage(String, boolean) method first

checks to see if the static getDefaultBase method returns non-null. If so, it returns the

result of calling loadImage(new URL(getDefaultBase(), filename), wait) instead.

You should override JGoImage.loadImage if you have alternate means of getting an

Image in memory and you depend on serialization. Setting the Image property by

JGoDocument and JGoObject Details

The JGo Package 19 Copyright Northwoods Software

calling loadImage(Image, boolean) works, but the Image is not serialized. When a

JGoImage is serialized and deserialized, it depends on the loadImage method to

reproduce the Image. If loadImage fails because there is no loadable Filename or URL

value and you have not provided an alternative means of getting an Image, no image will

show in the view for the deserialized object.

The JGoImage class keeps a cache of Image values for the files and URLs it loads from.

This saves time and space when the same image file is used by more than one object.

However, if the external file may have changed, you can clear the cached Image by

calling one of the static resetImage or resetAllImages methods.

JGoArea

JGoArea implements the concept of a "group" of objects that can be manipulated

together. An area, like a document, contains a list of JGoObjects. These objects must not

also be contained directly by the document, or by other areas—i.e., objects cannot be

shared.

Just as with document and layers, you can add objects in front of or behind the existing

objects in the area, by using the JGoArea.addObjectAtTail, addObjectAtHead,

insertObjectAfter and insertObjectBefore methods. If the object is already part of the

area, it will make sure the object is at the appropriate Z-order position. Otherwise the

object must not belong to any other area or be a top-level object in a layer. You can

“reparent” objects (between different areas or to/from top-level) within the same layer by

using the addCollection method.

JGoArea is a subclass of JGoObject, which means that areas can contain other areas.

This is the Composite pattern. Using this mechanism, an object hierarchy can be created.

An area does not really have its own independent bounding rectangle. Instead the

bounding rectangle is really the bounding rectangle for all of the children. In fact

getBoundingRect is not meaningful when there are no objects in an area.

JGoDocument and JGoView treat areas specially--they search in them when you use

pickObject or getNextObject.

Often you will want to have this whole "group" of objects be selected instead of any part.

Make the parts (child objects) not selectable; when clicking on a child object, that child

object will not be selected, but the parent area will be if that parent area isSelectable().

Clicking on any background within the area, i.e. not on a child object, does not select the

area. If you call setPickableBackground(true) (and the area is selectable and the

children are not), then clicking anywhere within the area's bounding rectangle will select

the area, including at any points where there are no visible parts of the area.

It is commonplace for each top-level area to be selectable, but not to have pickable

backgrounds, and for all of the children to be not selectable. As you construct your area

by adding JGoObjects, you will typically need to remember to call setSelectable(false)

on each child object.

If a JGoArea object is removed from the document, all of its children are also removed.

The coordinates for objects within the area are kept in document coordinates; they are not

relative to the area.

JGo User Guide

20

JGoArea Management

Any object’s position and/or size is changed by a call to setBoundingRect. Such a

change will also invoke the geometryChange method and all document listeners with a

CHANGED document event and a ChangedGeometry hint. Remember that these hooks

get called after the size and position have been changed. Override setBoundingRect

itself if you want to prevent certain geometry changes from happening at all, but do so

very cautiously.

The default behavior implemented by JGoArea.geometryChange moves all the children

and resizes them by the same scale that the whole area is resized. This is performed by

the standard implementation of the rescaleChildren method. For areas that are “nodes”,

(an icon, a label and some ports), the built-in resize is probably not appropriate,

especially when text strings are included. You can set a child’s AutoRescale property to

false to prevent rescaleChildren from changing the size of the object. In fact, JGoText

objects have a default value of false for AutoRescale.

Particularly since not all children are scaled proportionately, you will need to specify the

size and position of the children explicitly. It is fairly common for each subclass of

JGoArea to override layoutChildren in order to re-position and perhaps re-size the

area’s children to maintain a certain appearance.

The standard JGoArea.moveChildren method is called by geometryChange to move

all of the area’s children when neither the width nor the height of the whole area has been

changed.

When an area’s child object’s size or position is changed by a call to setBoundingRect,

the parent area is notified by a call to geometryChangeChild. This allows the area to

adjust its notion of its position and size. The default behavior for

JGoArea.geometryChangeChild is to call layoutChildren; the argument will be the

child object that was moved or resized.

But remember that the change was instigated by a change to a child, and not to the area as

a whole. Be careful to avoid infinite adjustment loops or differing behavior depending on

the order of changes. This might happen if you look at the bounding rectangle of the

whole area after changing the bounding rectangle of a child. Since the bounding

rectangle of the whole area is the union of the bounding rectangles of its children, moving

a child may change the bounding rectangle of the area, which may throw your child

layout out of whack. Instead, try to position and size all of the children relative to a

particular child that the user would think of as being the primary object. For example, for

a JGoTextNode, that primary object is the JGoText, so JGoTextNode.layoutChildren

method sizes and positions all other child objects relative to that text object.

You need to consider whether users trying to move or copy a child object should instead

move or copy the parent. Because most children are not Selectable this is not an issue—

the parent object will be selected and moved. But if they are selectable and you want

them to move independently, you will want to set the JGoObject.DragsNode property to

false. (This happens automatically when you add a child to JGoSubGraph.) Even then

if your override of JGoArea.layoutChildren automatically repositions each of the

children to the “right” place when the area is resized, that will keep the child in its

original location! If you want to allow children to be selected and able to be moved on

JGoDocument and JGoObject Details

The JGo Package 21 Copyright Northwoods Software

their own, you should make sure that the geometryChange and layoutChildren methods

do not control their positioning.

On the other hand, if you want the children of a group to be individually selectable but

you do not want the user to move them independently, you should set the

JGoObject.DragsNode property to true for each of these children. This will let a user’s

drag of a selected child drag the whole top-level area.

If the object’s shape isn’t like the bounding rectangle, you may need to override

JGoObject.isPointInObj to improve picking

JGoPort

JGoPort acts as a connection point for JGoLink objects. Each port has a collection of

JGoLinks that are attached to the port.

Appearance

By default a JGoPort appears as an ellipse, but it can use any other JGoObject to

control its appearance. The predefined styles are:

 StyleHidden – nothing is drawn

 StyleObject – another object (a “Port Object”) provides the representation

 StyleEllipse – uses an ellipse (or circle)

 StyleTriangle – uses a triangle “pointing” appropriately

 StyleRectangle – uses a rectangle (or square)

 StyleDiamond – uses a four-sided polygon with the vertices at the midpoints of

the bounding rectangle’s edges

The following example node has two ports of StyleEllipse and two ports of

StyleTriangle:

In the following screenshot there is a node with nine ports of StyleDiamond, with a link

to a JGoBasicNode whose port is StyleHidden, and another link to the first item in a

RecordNode whose port is of StyleObject; the object providing the appearance for the

port is a JGoImage displaying a star. The second item has an elliptical port, filled with a

black brush.

JGo User Guide

22

JGoPort is a subclass of JGoDrawable, so you can easily control the appearance of the

non-hidden, non-Object ports by calling setPen and/or setBrush.

Ports can also share many Port Objects. Your application can, for example, pre-allocate

several different JGoImage instances corresponding to the kinds of states you want to

display to the user. As each port changes state, you just need to call setPortObject with

the appropriate image. Because potentially many ports will share these Port Objects, they

must not be part of any document (or area or view). Before each Port Object is painted,

its bounding rectangle will be set to the bounding rectangle of the port.

Linking Ports

For your application, some ports may be valid sources for links, some may be valid

destinations, and some may be both or neither. It may be that some particular pairs of

ports cannot have a valid new link between them. For example, you may want to avoid

having two different links connecting the same two ports. JGoView calls the

isValidSource, isValidDestination and validLink methods to allow the particular port

classes the ability to control whether the user can draw a link starting at a given port and

ending at one.

The standard definition of JGoPort.validLink also calls isValidSelfNode and

isValidDuplicateLinks to decide if it is OK to create a link with both ports part of the

same node and to decide if it is OK to create more than one link in one direction between

the same pair of ports. It also checks the JGoDocument.getValidCycle property to

possibly call one of the JGoDocument.makesDirectedCycle or makeUndirectedCycle

methods.

The ValidSource, ValidDestination, ValidSelfNode, and ValidDuplicateLinks

properties are all settable. The ValidCycle property of JGoDocument is settable too, of

course.

When the mouse is over a port where the user can start drawing a link, the cursor changes

to a Hand cursor.

Because ports have a size, the exact point at which a link should terminate may want to

depend on the dimensions of the port. Furthermore it is common for there to be different

points depending on whether the link is coming in or going out of the port or where the

port is located relative to the rest of the node. This notion is supported by the FromSpot

and ToSpot properties, which remember the object spots that links connected to this port

should end at. The getLinkPoint method is responsible for calculating this Point; the

default behavior depends on the FromSpot and ToSpot values.

Override the getLinkPoint method to produce more sophisticated link appearances.

Usually if the link direction for the port is on one side, the link point will be on the same

side to avoid overlapping the link with the visual appearance of the port. Note that the

JGoDocument and JGoObject Details

The JGo Package 23 Copyright Northwoods Software

link point need not be in the bounding rectangle of the port, although if it is too far away

it might be confusing or disconcerting for the user.

If you expect the link point to vary dynamically, you may wish to specify NoSpot as the

value for one or both of the FromSpot and ToSpot properties. Override the

getLinkPointFromPoint method and calculate the link point. The X and Y arguments

specify approximately where the link is coming from or going to.

Links that are connected to a port may be constrained to come into the port or come out

of the port from certain directions. The direction is calculated by getLinkDir. The

standard directions correspond to the spot locations. If the spot is Center or NoSpot you

will want to override this method to return the desired direction.

Navigating Links

Each port has a collection of links that are attached to the port. The port does not own

any of the links; normally the document owns all links. From a port you can iterate over

all the links to get to all the ports connected by those links. For example, here is the code

in the Family Tree example where the document is positioning all the “children”

PersonNodes for a particular mother/father pair. All of the children are linked to the

mother/father marriage at a “marriage port”, here held in a variable named mp.

 // now look at each child

 JGoListPosition childpos = mp.getFirstLinkPos();

 while (childpos != null) {

 JGoLink childlink = mp.getLinkAtPos(childpos);

 childpos = mp.getNextLinkPos(childpos);

 JGoPort childp = childlink.getOtherPort(mp);

 PersonNode childnode = (PersonNode)childp.getParent();

 layoutTree(childnode, childrect);

 }

This code iterates over the links at the mp port. It gets the port at the other end of the link.

Then it gets the PersonNode for that other port by getting the port’s parent container and

assuming it is of the correct class. Finally it actually calls a function with that node

representing the child.

Another method that can be useful for finding directly connected links or nodes is the

JGoNode.findAll method.

JGoLink

JGoLink is a JGoStroke that connects two different JGoPorts. Normally you create a

link by allocating a new JGoLink specifying both the “from” and “to” ports, and adding

it to a document. Delete a link by calling the unlink method, which automatically

removes the link from the document as well as disconnecting the link from its ports.

JGo User Guide

24

Link Path

The default link stroke will consist of three straight segments (four points in the stroke).

The end segments, at the ports, will be relatively short. The middle segment will be just a

straight line connecting the two short segments at the ports. There is no short end

segment if the corresponding port does not have a link port spot (i.e., the value is

NoSpot). JGoPort.getLinkDir gives the direction. You can control the length of this

short end segment by setting the JGoPort’s EndSegmentLength property.

If both ports have link port spots that are NoSpot, then the default link stroke consists of

only a single segment (two points in the stroke), unless is it Cubic, when it will have four

points and the Curviness property governs the path of the curve.

If you set the Orthogonal property to true, the default link stroke will have five

segments instead of three, and all segments will be either horizontal or vertical. You can

also have the corners of orthogonal links be rounded by setting the RoundedCorners

property. When isRoundedCorners() is true, getCurviness() controls the diameter of

the corner curve.

If the position of one or both of its JGoPorts changes, the JGoLink redraws itself to

connect the new positions. When either port changes it calls the portChange method,

which by default just calls calculateStroke. For complete control over the points in the

stroke, override the calculateStroke method to define the points used by the link’s

stroke. However, you can set the AdjustingStyle and AvoidsNodes properties to control

how the intermediate points are plotted, excluding the end segments, if any.

When the link’s from and to ports are the same port, the default calculateStroke method

produces a little “loop” connecting the port with itself.

If you programmatically create a link between two nodes, the initial route for the link

may cross over some nodes until the calculateStroke method has a chance to adjust.

You may want to call calculateStroke explicitly on such newly created links.

Appearance and Behavior

Many attributes of links can easily be customized through the properties and methods of

JGoStroke and JGoDrawable, such as:

 line color, thickness, and style (JGoDrawable.setPen)

 arrowheads (JGoStroke arrowheads)

 number, location, and size of line segments (JGoStroke points and

calculateStroke; for curved links, JGoStroke.setCubic)

 number, style, and behavior of resize handles (pick points and handleResize)

 highlighting (JGoStroke.setHighlight)

 jumping-over of orthogonal segments (JGoLink.setJumpsOver)

 curviness of cubic non-orthogonal links and rounded corners of orthogonal links

The following screen shot displays a JGoLabeledLink that has an arrowhead at the “to”

end and only a single segment connecting two styles of JGoBasicNode, an Orthogonal

link to a GeneralNode, and a standard three-segment link between the two general

JGoDocument and JGoObject Details

The JGo Package 25 Copyright Northwoods Software

nodes. The orthogonal link also has a thick red highlight pen in addition to the standard

black pen of width 1.

When a JGoLink is cubic, and the link connects two JGoPorts that have NoSpot,

calculateStroke automatically places the points of the stroke in a curve. The Curviness

property controls how far off a straight line the control points are for the cubic stroke. A

positive value produces a clockwise curve; a negative value produces a counter-

clockwise curve, and a value of zero produces a straight line.

The following picture shows two cubic links connecting two JGoBasicNodes. Each link

has the default Curviness.

You can distinguish between multiple links between the same ports by assigning different

values to Curviness:

As mentioned earlier, the JGoLink.calculateStroke method is called when one of the

ports is moved and the stroke points need to be replotted in order to maintain the

appearance of a connection between the link’s two ports. The standard behavior,

depending on various properties of the link and of the ports, was also described above.

However, a link may very well have a non-standard path, either because you have

programmatically modified the points, or because the user has “resized” some of the link

points by hand. The behavior of calculateStroke depends on the link’s AdjustingStyle

property. The default value is JGoLink.AdjustingStyleCalculate, which produces the

standard link path. Thus if the user has manually moved some of the intermediate points

of a link, and then moves one of the connected nodes, the manual customization is lost

because the link’s path is restored to the standard route.

However, you can set the AdjustingStyle property to other values:

 JGoLink.AdjustingStyleScale – scale and rotate the intermediate points of the

link so as to maintain the appearance of the shape of the link, but at a different

size and angle to accommodate the new relative positions of the ports

JGo User Guide

26

 JGoLink.AdjustingStyleStretch – interpolate the intermediate points of the link

along the X and Y dimensions between the ports

 JGoLink.AdjustingStyleEnd – just modify the end point(s), leaving the other

points of the link stroke unchanged

For an example of what occurs with a cubic link, before and after one node is moved:

When the link is Orthogonal, an AdjustingStyle value of AdjustingStyleScale is treated

as if it were just AdjustingStyleCalculate, since one cannot maintain orthogonality and

similarity of shape. Also, an AdjustingStyle value of AdjustingStyleStretch is treated

as if it were just AdjustingStyleEnd, again because orthogonality cannot be maintained.

Furthermore, the AvoidsNodes property makes the AdjustingStyle property moot—the

path is always recalculated.

When the AvoidsNodes property is set to true, the calculateStroke method computes a

short path between the nodes that tries not to cross any nodes. Some customization of

this method can be achieved by overriding the JGoDocument.isAvoidable method to

control which top-level objects it tries to avoid, and by overriding the

JGoDocument.getAvoidableRectangle method to specify how much of each avoidable

node to consider avoiding.

A selected link will not have selection handles at the very end points, unless there is only

one segment in the stroke. Resizing a link by dragging an end selection handle causes the

link to be reconnected. The existing link is disconnected from one port. When the link

JGoDocument and JGoObject Details

The JGo Package 27 Copyright Northwoods Software

gesture is completed the port is set again. You can disable this user-relinking behavior by

setting the Relinkable property to false.

The default resize behavior for interior stroke points simply moves that point, rather than

cause the link to be deleted and a new one started. If the link is orthogonal, the resizing

moves that middle segment to maintain orthogonality. The sample applications include

code to let the user insert new points and remove segments.

Labeled Links

This subclass of JGoLink that supports managing up to three additional objects located

near either end and near the middle of the link. The JGoLabeledLink class has three

properties: FromLabel, MidLabel, and ToLabel, which can be null or any JGoObject.

JGoLabeledLink overrides calculateStroke to perform the default stroke calculation

and then position each of its (non-null) labels to be near their respective points of the

link. The methods positionEndLabel and positionMidLabel try to be smart about

placing the labels where they do not overlap the link stroke too much, but you can

override these methods to implement your own positioning policies.

The labels can be any object but are usually instances of JGoLinkLabel, a subclass of

JGoText. A JGoLinkLabel has a transparent background by default, and is not

resizable or draggable.

A JGoLabeledLink is not a JGoArea, even though it might appear that it has parts as an

area does. The labels are inserted in the link’s parent collection (normally a document

layer, but perhaps an area or a view) right after the link, so that they appear just on top of

the link. But one property of areas has been reused for labeled links:

GrabChildSelection. If a JGoLinkLabel is not selectable, the JGoLabeledLink will

be selected if the GrabChildSelection property is true, which it is by default.

JGo User Guide

28

4. JGOVIEW DETAILS

JGoView is a control that supports the display and editing of graphical objects such as

nodes and links.

JGoView supports the model-view-controller architecture. JGoDocument is the model

for JGoView.

JGoView supports many basic features:

 displaying a JGoDocument and its JGoObjects

 displaying its own view-specific objects

 scrolling and scroll bars

 autoscrolling

 scaling (zooming)

 printing

 clipboard transfer

 drag-and-drop

 default keyboard commands

 view events and listeners

 selection

 creating links between ports

 resizing objects

 handling single clicks, double clicks

 handling mouse move and tool tips

 in-place text editing

 default cursor

 painting a background color and a background image

 displaying a grid

 constraining object moves and resizes to a grid

JGoView Details

The JGo Package 29 Copyright Northwoods Software

Display

The primary purpose of JGoView is to display a JGoDocument and its JGoObjects.

You can use the default JGoDocument that is created for the default JGoView

constructor, or you can supply your own, either at construction time or later by calling

setDocument. It is also common to override createDefaultModel so that the default

constructor for your view subclass will automatically create your own document class

too.

A JGoView is just a regular Control. The part of a JGoView that shows the document is

called the canvas. A view can also have scroll bars.

JGoView also supports the display of its own view-specific objects. Thus each view on

the same document can have its own set of JGoObjects. These view objects will appear

in front of all document objects. The most common example of a view object is a

selection handle (a JGoHandle).

Scrolling

JGoView has support for scrolling and scroll bars built in. By default there will be both a

horizontal and a vertical scroll bar, but you can remove one or both of them by setting the

respective properties to null. There is also a separate corner control, where the two scroll

bars meet, that is visible when both scroll bars are visible.

Because a view does not necessarily show the whole document, the ViewPosition

property indicates where the view's top-left corner is in the document. The ExtentSize

property indicates the size of the view's canvas in the document.

Each view also provides getDocumentSize and getDocumentTopLeft methods, which

allow each view to have a potentially different notion of the document it is looking at. In

particular, the includingNegativeCoords property affects the behavior of both of these

methods. A false value prevents users from scrolling to parts of the document at negative

coordinates. Alternatively, a true value allows the objects of the document to be placed

anywhere, which can be convenient when additional objects need to be added to the left

of the existing ones, and you don’t want to shift the existing ones rightwards.

Scaling and Coordinate Systems

JGoView also supports zooming, to change the scale at which the objects are drawn. The

Scale property is normally 1.0; smaller values make objects appear smaller on the screen;

larger values correspond to zooming into the diagram.

The ability to scroll and zoom the view means that the coordinate system used in a view

is different from that used in the document. The convertDocToView and

convertViewToDoc methods perform the basic transformations of Points, Dimensions,

and Rectangles. The docToViewCoords and viewToDocCoords methods are retained

from earlier versions, but can be less efficient to use because they allocate new objects

for the return values.

Painting

As a Control, JGoView overrides paintControl in order to render the view. This is

responsible for scaling and translating the Graphics2D, getting a document-coordinates

JGo User Guide

30

clipping rectangle, and double-buffering any painting operations. It then calls paintView,

which calls methods to fill in the paper color, to draw any additional background, to draw

all of the document objects (layer by layer), and then to draw any view objects. You can

override paintView or any of the four methods called by paintView in order to get

different effects; overriding paintPaperColor and paintBackgroundDecoration are the

most common. Note that setting the BackgroundImage property affects the standard

implementation of paintBackgroundDecoration.

Printing

JGoView also provides support for printing. The print method brings up the print dialog

and then starts a PrinterJob. You can easily override getPrintDocumentSize,

getPrintPageRect, and getPrintScale to customize how much is printed, on how much

of the page, and at what scale. Override printDecoration to add headers and/or footers or

any other decoration on each page. Override printView, like paintView, to change what

things get printed--by default the paper color and the view objects are not printed.

The Demo1 example view, Demo1View.java, includes example code for several different

common possibilities.

Selection

Each JGoView has a JGoSelection that holds the currently selected document objects for

that view. The default selection object is an instance of JGoSelection, but you can

override createDefaultSelection. The selection object is also responsible for managing

selection handles in the view. Many methods in JGoView deal with the current selection,

either by changing it, or by operating on its collection of objects. Important examples

include: cut, copy, deleteSelection, moveSelection, copySelection, and selectAll.

You can also control the color of the primary selection object’s handles as well as the

color of the selection handles of all other selected objects by setting the

PrimarySelectionColor and SecondarySelectionColor properties of JGoView.

Events

JGoView is a JGoDocumentListener, which is how it can keep its display up-to-date

with changes to the document and its objects.

If you do nothing to override the input handling of a JGoView, the default behavior gives

you input handling that anyone familiar with a graphical object editor would expect.

Objects can be selected, moved, and resized using the left mouse button. Multiple

selections can be made using control-left button or with rubber-band selection. Links can

be created by left button down-drag over a JGoPort.

By default most events are ignored if the view does not have focus. A mouse pressed

event will try to acquire focus.

The document property Modifiable affects view behavior. When the view’s document

isModifiable() is false (the default value for the property is true), JGoView disables the

user’s ability to move and resize objects, to link ports, to drop objects, and to edit text.

Selection and scrolling and other event handling continue to operate normally if they do

not normally modify the document. Furthermore, this property is available on

JGoLayer, and JGoLayer.isModifiable() is only true when both the layer and the

JGoView Details

The JGo Package 31 Copyright Northwoods Software

document are modifiable. Thus you can easily turn off user modification of a whole set

of objects, if they all belong to one layer, without disabling user modification of all the

other objects in the document.

View Events

JGoView also has view-specific state and general actions that other objects may care

about tracking. Thus a JGoView will notify its JGoViewListeners about any

JGoViewEvents. Such events include:

 inserting, changing, and removing view objects (but not document objects)

 adding and removing objects from the view's selection

 single and double clicking on objects or in the background

 moving, copying, or deleting the selection

 drawing a new link or reconnecting an existing link

 finishing in-place editing of text

 pasting from the clipboard or dropping objects from another window

 changing the view's position and scale or other view properties

A listener can call JGoViewEvent.getHint() to distinguish between the different kinds of

events. The following table lists the standard abstract events that a view will fire.

JGoViewEvent hint Method that fires the event

CLICKED (single click on a document object) JGoView.doMouseClick

DOUBLE_CLICKED (on a document object) JGoView.doMouseDblClick

BACKGROUND_CLICKED JGoView.doBackgroundClick

BACKGROUND_DOUBLE_CLICKED JGoView.doMouseDblClick

SELECTION_GAINED (object added to selection) JGoSelection methods

SELECTION_LOST (object removed from selection) JGoSelection methods

SELECTION_STARTING (before a possibly big

selection change)

JGoSelection.clearSelection,

JGoView.selectAll,

copySelection, deleteSelection,

paste, doDrop

SELECTION_FINISHED (after a possibly big

selection change)

JGoSelection.clearSelection,

JGoView.selectAll,

copySelection, deleteSelection,

paste, doDrop

SELECTION_MOVED JGoView.doMoveSelection

SELECTION_COPIED JGoView.doMoveSelection

SELECTION_DELETING (before actually removing JGoView.deleteSelection and

JGo User Guide

32

objects from document; call consume() to cancel) JGoView.noReLink

SELECTION_DELETED (after objects are removed

from document and from selection)

JGoView.deleteSelection and

JGoView.noReLink

OBJECT_RESIZED JGoView.handleResizing

LINK_CREATED JGoView.newLink

LINK_RELINKED JGoView.reLink

OBJECT_EDITED JGoText.doEndEdit

CLIPBOARD_PASTED JGoView.paste

CLIPBOARD_COPIED JGoView.copy and JGoView.cut

EXTERNAL_OBJECTS_DROPPED JGoView.drop

You can add a JGoViewListener to respond to any of these events. For example, you

can bring up a confirmation dialog when the user tries to delete something.

 myView.addViewListener(new JGoViewListener() {

 public void viewChanged(JGoViewEvent e) {

 if (e.getHint() == JGoViewEvent.SELECTION_DELETING) {

 String msg = "Really delete ";

 msg += Integer.toString(myView.getSelection().getNumObjects());

 msg += " objects?";

 MessageBox dlg = new MessageBox(myShell,

 SWT.ICON_QUESTION | SWT.YES | SWT.NO);

 dlg.setMessage(msg);

 if (dlg.open() == SWT.YES) {

 e.consume();

 }

 }

 }});

High Level Mouse Events

One of the more important functions of JGoView is the ability to handle mouse clicks.

The selection may change or a click will be passed on to any visible object on top at that

point. This will cause JGoViewEvents to be fired off to any interested listeners, and will

call doMouseClick or doMouseDblClick. This method then calls the method of the

same name on the object and on its parents up to the top-level object until a call returns

true, indicating that it completely handled the single-click or double-click. If there is no

object at the mouse point, doBackgroundClick is called, or doMouseDblClick returns

false.

Similarly, when the mouse moves without any mouse button being held down,

doUncapturedMouseMove is called, which in turn calls the same-named method on the

object underneath that point, and on up the parent chain until a call returns true. Getting a

tool tip text is also similar, in that the view passes the request down to a particular object

at that point, and to its parents, until it gets a non-null string.

JGoView Details

The JGo Package 33 Copyright Northwoods Software

For convenience the parameters on the do…Mouse… methods take an integer (the event-

modifiers) and two Points (mouse event location in both document and view

coordinates). You can get the original MouseEvent via the getCurrentMouseEvent

method. If you use getCurrentMouseEvent, be aware that this method may return null

if not invoked from a mouse handler method.

To implement popup menus, you should include the following overrides in your view

subclass:

 public boolean doMouseUp(int modifiers, Point dc, Point vc) {

 if ((modifiers & SWT.BUTTON3) != 0) {

 JGoObject obj = pickDocObject(dc, true);

 if (obj != null) {

 // the right-mouse-button was used

 selectObject(obj);

 if (obj instanceof MyNode) {

 final MyNode node = (MyNode)obj;

 Menu popup = new Menu(this);

 MenuItem item1 = new MenuItem(popup, SWT.NONE);

 item1.setText("Properties");

 item1.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent e) { showProps(node); }

 });

 if (node.canExecute()) {

 MenuItem item2 = new MenuItem(popup, SWT.NONE);

 item2.setText("Remove Segment");

 item2.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent e) { node.exec(); }

 });

 }

 // coords need to be relative to Display

 popup.setLocation(toDisplay(vc));

 popup.setVisible(true);

 }

 return true;

 } else { // no object found at Point dc

 // can handle background context click here . . .

 }

 }

 // otherwise implement the default behavior

 return super.doMouseUp(modifiers, dc, vc);

 }

Resizing

Views also have default behavior for resizing objects. When the user does a mouse down

on a selection handle, the view goes into resizing mode. This causes the handleResizing

method to be called while the mouse is dragging the selection handle. This method in turn

calls the handleResize method on the selected object, assuming it isResizable. The

object can then decide how to interpret the resize request.

JGo User Guide

34

JGoView's default behavior is to draw an XOR box during the resizing, and to reshape

the object when the resizing is done. You can easily override this behavior to redraw the

object continuously with the resizing, instead of drawing the XOR box. If the user

cancels the resizing with the Escape key, the object is restored to its original size and

position.

When the object is finally resized, there will be a JGoDocumentEvent.CHANGED

event for that object, because its geometry will have been changed.

Drag and Drop

JGoView has a default behavior for drag-and-drop. Each view is both a drag source and a

drop target. Within a view, a drag-and-drop moves or copies the selected objects;

between views a drag-and-drop copies the selected objects, and from another drag source

the view can decide to accept the drop and to handle it in an application specific manner.

If the user cancels a drag from a JGoView, the selected objects are restored to their

original locations.

You can control whether a view handles any mouse events or any drag-and-drop behavior

by setting the MouseEnabled, DragEnabled, and DropEnabled properties. If you turn

off drag-and-drop, of course the user will not be able to perform any standard drag-and-

drop between windows. However, much of the behavior within a JGoView will continue

to function. Without the drag-and-drop mechanism, mouse events (MouseListener and

MouseMoveListener) invoke the JGoView methods doMouseDown, doMouseMove,

and doMouseUp. With the drag-and-drop mechanism, when drag-and-drop is an internal

one within a view, the DropTargetListener methods just invoke the same methods.

To customize a view as a drop target from other components, you may want to override

two methods: computeAcceptableDrop and onExternalDrop. If you want to make use

of the default copy behavior, you can call doDrop from your override of

onExternalDrop. If you need somewhat more extensive customization, you can just

override any of the standard DropTargetListener methods.

Remember that all selected JGoObjects that are dragged and dropped need to be

serializable. If serialization fails, perhaps because your object has a reference to an

object that is not itself serializable, the serialization failure exception will be caught by

the drag-and-drop system, resulting in a drag-and-drop failure rather than the behavior

you expect.

Views have additional default behavior for drags within a view: the user can either move

or copy the selection, using the CTRL key as a modifier to indicate copy rather than

move. The copying is indicated with an image of the selected objects that follows the

mouse while the CTRL key is down. The actual copying of the selection and addition to

the document is performed only if the CTRL key is still down at the time of the drop.

The original selection remains at its original location; the newly copied objects become

the new selection at the drop location.

The behavior for view-internal drags is controlled by the InternalMouseActions

property. The default value is DND.DROP_COPY | DND.DROP_MOVE. Set it to

DND.DROP_MOVE to get move-only behavior, or set it to DND.DROP_NONE to

disable all internal selected object drags, without disabling selection, resizing, linking, or

other default view behaviors.

JGoView Details

The JGo Package 35 Copyright Northwoods Software

You can further customize drags within a view by setting the DragsRealtime and

DragsSelectionImage properties. By setting the DragsRealtime property to false the

user’s moving the selection will not actually cause those objects to be continuously

moved; instead the user will move an image of the selection, and the objects are actually

moved only upon a successful drop. The DragsSelectionImage property (which defaults

to true) controls whether a user’s drag will drag an image of the selection or an outline of

the selection.

Customizing the Mouse Behavior

You may want additional behaviors or “modes” of operation for the user. For example,

you may want to allow the user to draw a stroke by specifying the points of the stroke by

clicking. You can accomplish this by overriding the JGoView methods doMouseDown,

doMouseMove, doMouseUp and doCancelMouse.

The current mouse state of the view is accessible as the State property of JGoView;

predefined values include the JGoView constants starting with the “MouseState” prefix:

 MouseStateNone

 MouseStateSelection

 MouseStateMove

 MouseStateCreateLink

 MouseStateCreateLinkFrom

 MouseStateResize

 MouseStateDragBoxSelection

 MouseStateLast

 MouseStateAction

You can define your own modes or states by using values larger than MouseStateLast.

Each mode has its own specific prerequisites in order to operate properly, so you should

be careful about interacting with the existing behavior. For convenience there is a

CurrentObject property that normally holds the current JGoObject relevant to the

current view state.

Clipboard

JGoView supports copying the selection to and from the system clipboard; use the copy,

cut, and paste methods. These methods depend on the JGoTransfer class to identify the

kind of data and the document's copyFromCollection method.

JGoView.copyToClipboard makes a new document, copies the selection into it, and

then serializes the document into the clipboard. JGoView.pasteFromClipboard

deserializes the clipboard document and then calls copyFromCollection to make a copy

of the selected objects in the view’s document.

JGo User Guide

36

Keyboard Commands

A view can accept keyboard focus and can respond to several keyboard commands by

default. Override onKeyEvent to change or augment the default commands. You can

control whether there is any default key event handling by setting the KeyEnabled

property.

User Editing

Creating Links

Another important JGoView feature is the support for the user creating JGoLinks

between ports by "dragging" from a JGoPort to another one. The startNewLink method

uses validSourcePort and validDestinationPort to see if the port under the mouse point

will permit the user's starting a new link. If so, the view creates a temporary port and a

temporary link from the port to the temporary port. While the user remains in this

creating-a-new-link mode, the temporary port is continuously moved to follow the

mouse.

Furthermore the view checks to see which ports to which it could make a valid new link,

by calling validLink for all potential pairs of ports involving the original one. The

default implementation of validLink just asks the "from" port if it can be linked to the

"to" port; this allows the behavior to be overridden either in the port class or in the view.

To make drawing links easier for the user, there is also the notion of "port gravity", a

distance. The temporary port automatically snaps to the location of the closest valid port

within the port gravity distance.

Finally, when the user releases the mouse to create the link, the newLink method is

called. This method is responsible for creating the real JGoLink (either that class or a

user-defined subclass) in the document connecting the two ports; the temporary port and

link are discarded. If for some reason the link is not made, because the attempted link was

invalid or because the user cancelled the link drawing process, the noNewLink method is

called. This allows views to clean up any other state or inform the user or do some other

default failure action.

In-place Text Editing

Another handy feature that JGoView offers is in-place text editing. If a JGoText object

is editable, then clicking on it may put it into editing mode, where the user can change the

string. This is accomplished by creating a temporary JGoTextEdit object in this view

and having it be responsible for actually creating and displaying a JTextComponent and

handling its editing completion or cancellation. The JGoTextEdit object is held as a

property of the view (JGoView.getEditControl()). Use doEndEdit to stop any in-place

text editing in progress.

You can control how the user can enter text-editing mode by setting the Editable

property of the JGoText object. By default this happens when the user double-clicks on

the text. By setting the EditOnSingleClick property, the user can just click on the text to

start editing it. However, this is only possible if the JGoText object is selectable. If it is

not selectable, probably because it is part of an area, you may need to override

JGoView Details

The JGo Package 37 Copyright Northwoods Software

doMouseClick to start editing. See the examples/SimpleNode.java code for an

example.

If you want to detect when the user has edited a JGoText object:

 myView.addViewListener(new JGoViewListener() {

 public void viewChanged(JGoViewEvent e) {

 if (e.getHint() == JGoViewEvent.OBJECT_EDITED) {

 JGoText text = (JGoText)e.getObject();

 JGoObject node = text.getParentNode();

 if (node instanceof MyNode) {

 MyNode m = (MyNode)node;

 String s = text.getText();

 . . . update my database for node m to have value s

 }

 }

 }});

Alternatively, you could implement a JGoDocumentListener (or, more efficiently,

override JGoView.documentChanged) to do something similar:

 myView.getDocument().addDocumentListener(new JGoDocumentListener() {

 public void documentChanged(JGoDocumentEvent e) {

 if (e.getHint() == JGoDocumentEvent.CHANGED &&

 e.getFlags() == JGoText.ChangedText) {

 JGoText text = (JGoText)e.getObject();

 JGoObject node = text.getParentNode();

 if (node instanceof MyNode) {

 MyNode m = (MyNode)node;

 String s = text.getText();

 . . . update my database for node m to have value s

 }

 }

 }});

The difference is that the document listener will be invoked whenever the JGoText

label’s Text string is modified, for any reason. The view listener is called only after the

user edits the label interactively.

If you want to do some validation of the user’s text entry, you can override

JGoText.doEdit. Here is an example:

 // do some validation--don't allow integers larger than 1000

 public boolean doEdit(JGoView view, String oldtext, String newtext) {

 try {

 int i = Integer.parseInt(newtext);

 if (i > 1000) {

 view.doCancelMouse();

 MessageBox dlg = new MessageBox(view.getShell(),

 SWT.ICON_ERROR | SWT.OK);

 dlg.setMessage(Integer.toString(i) + " is too big!");

 dlg.open();

 return false;

 }

JGo User Guide

38

 } catch (NumberFormatException ex) {

 // allow non-integers to pass validation

 }

 return super.doEdit(view, oldtext, newtext);

 }

Returning false will leave the text editing component up; returning true will cause

doEndEdit to be called to remove the text editing component.

Note the call to JGoView.doCancelMouse, to make sure no mouse operation is ongoing

in the view during or immediately after the presentation of the dialog.

Nodes

The JGo Package 39 Copyright Northwoods Software

5. NODES

As noted previously, sets of JGo primitive objects can be combined into higher-level

grouped objects. One of the most common applications of this technique is in creating a

“node” for a diagram. A node is a JGoArea that contains some JGoPorts, thus allowing

the nodes to be connected to each other with JGoLinks.

The JGoNode class extends JGoArea to provide several useful features that practically

all “nodes” have. Each node has several properties:

 Label, providing access to the principal JGoText object in the area

 Text, which by default accesses the string in the Label

 ToolTipText, which if non-null, is a string to be displayed in a tooltip when the

user hovers over the node

 PartID, a unique integer identifying this node, if the node’s document’s

MaintainsPartID property is true

 UserObject, an arbitrary object that programmers can use to associate their own

information with the node (i.e., this property is not used by JGo)

 Flags, an arbitrary integer that programmers can use for application-specific

purposes (i.e., this property, which is actually on JGoObject, is not used by JGo)

All of the classes in JGo whose names end in “Node”, whether part of the JGo package or

as examples, extend JGoNode. We recommend that you extend the JGoNode class or

one of its subclasses when you want to define your own area containing ports.

Three very commonly used kinds of nodes are included in the JGo package, along with

one kind that can hold nested graphs:

 JGoBasicNode, an elliptical or rectangular node with a single port and a single

optional text label that can be positioned at different spots relative to the

drawable shape

 JGoIconicNode, the simplest node with an image for the icon, a text label, and a

single port

 JGoTextNode, a node displaying text with a background shape and four ports,

one at the center of each side

 JGoSubGraph, a node that can hold a graph within the area, with optional label,

background color and border, and that can be collapsed/expanded by the user

JGo User Guide

40

But many useful examples are provided for you in the examples directory. These

include:

 SimpleNode, a node with an icon, a label, and two ports

 GeneralNode, a node with an icon, labels at the top and bottom, and variable

numbers of labeled ports on the left and right sides

 MultiPortNode, a node like JGoIconicNode, but with a variable number of

ports that can be positioned arbitrarily on the node

 MultiTextNode, a node displaying a list of objects (typically JGoTexts) with a

pair of objects (typically JGoPorts) on each side of each item, separated by lines

and backed by a JGoDrawable, with an additional pair of objects (again,

typically ports) at the top and bottom of the node

 ListArea, an area that organizes a list of objects, much as MultiTextNode does,

but with a scroll bar

 RecordNode, a complex node that uses a ListArea to hold a scrollable list of

objects with ports, and adds header and footer objects

 Comment, an area that displays multi-line text with a background that looks like

a notepad

Other potentially useful node, link, and drawable classes are provided in the example app

subdirectories, including:

 ClassNode (in Classier)

 Diamond (in the examples directory)

 PersonNode (in FamilyTree)

For all of these examples, be sure to look at the source code for more descriptions and

details.

JGoBasicNode

The JGoBasicNode class is useful when you want to display some text and there is just a

single port centered in an ellipse or rectangle. Use JGoBasicNode when you expect that

there may be links coming in or going out in different directions, and you would like the

link to seem to originate from the center of the ellipse or rectangle.

A JGoBasicNode has properties for its parts: Drawable, Label, and Port. As with all

JGoNode subclasses, there is easy access to the text string by means of the Text

property. JGoBasicNode also provides convenient access to the Drawable’s Pen and

Brush properties.

You can control the relative position of the JGoText label to the JGoDrawable

background shape by setting the LabelSpot property. For example, the following

diagram shows four different JGoBasicNodes, each with a different LabelSpot.

Nodes

The JGo Package 41 Copyright Northwoods Software

Users can draw new links interactively by dragging from the ports in the center of the

nodes. They can select/move/copy nodes by a mouse-down on the text or on the rest of

the drawable shape.

When the LabelSpot is JGoObject.Center, then the layout of the node is altered so that

the background shape is expanded to surround the text.

The port’s style is changed to be JGoPort.StyleHidden, and its size and position are

changed to match that of the background drawable shape. Thus users will be able to

interactively draw links between such JGoBasicNodes by starting to drag in the drawable

shape but outside of the text itself. Users can drag the node by dragging the text. In this

configuration it is easy to disable user-drawing of new links for a particular node by

making the port invisible: aBasicNode.getPort().setVisible(false).

The size of the drawable’s object is determined by the size of the text label. The Insets

property specifies how much bigger to make the drawable object than the label. This is

particularly useful for shapes such as JGoEllipse or Diamond that would otherwise cut

off part of the text.

If however you want the drawable’s size to remain constant even when the label’s size

changes due to text changes, you can call setAutoResize(false) to cause the JGoText

label to be Multiline, Wrapping, and Clipped, with a WrappingWidth determined by

the width of the drawable minus the Insets. It will display as much text as will fit.

Usually you will want to call getLabel().setAlignment(JGoText.ALIGN_MIDDLE) to

have the text be centered in the node.

If you create a JGoBasicNode by using the zero-argument constructor, it will not have

any parts. You will need to create and assign the parts yourself. If you use the

JGoBasicNode constructor that takes a string, the resulting node will have a Label, a

Port, and a Drawable that is a JGoEllipse.

JGoIconicNode

A JGoIconicNode is the simplest node that has an icon. It has a text label and a single

port. You’ll want to use JGoIconicNode in the same circumstances as JGoBasicNode,

JGo User Guide

42

except that JGoIconicNode’s primary display is an icon rather than a text object with a

rectangle or ellipse. Links appear to originate from the center of the icon.

A JGoIconicNode has properties for its parts: Icon, Label, and Port. The Text property

provides convenient access to the label’s text string. The Icon need not be an instance of

JGoImage, although it is by default. For convenience, the Image property casts the Icon

as a JGoImage.

Like a JGoBasicNode, the port of a JGoIconicNode is at the center of the icon, but its

style is JGoPort.StyleHidden so it does not obscure the icon. Users can draw links from

and to the icon. Users can drag the node by dragging the text or part of the icon outside

of the port. It is also easy to disable a user’s drawing of new links for a particular node

by making the port invisible.

If you create a JGoIconicNode by using the zero-argument constructor, it will not have

any parts. You will need to create and assign the parts yourself. If you use the

JGoIconicNode constructor that takes a string, the resulting node will have a Label and

a Port and an Icon that is a “blank” JGoImage. You will still need to initialize the

image, perhaps as follows:

 JGoIconicNode inode = new JGoIconicNode("an iconic node");

 inode.getImage().setSize(50, 50);

 inode.getImage().loadImage(Demo1.class.getResource("doc.gif"), true);

 . . . other inode initialization . . .

If the DraggableLabel property is set to true, the user is able to drag the text label

around. Moving the node then also drags the label, keeping it at the same position

relative to the icon.

Nodes

The JGo Package 43 Copyright Northwoods Software

JGoTextNode

When you have a lot of textually identified objects to display, and the links between them

tend to be organized in a horizontal and/or a vertical direction, then the JGoTextNode

may be what you would prefer to use in place of a JGoBasicNode. Each JGoTextNode

has four ports—one in the middle of each side of the node. When the links are connected

to the appropriate ports, the links tend to be more cleanly organized, whether using the

default three-segment stroke or the five-or-more-segment strokes when the JGoLink

Orthogonal property is true.

The Text property provides access to the label’s string value.

By default the four ports are very small and of style JGoPort.StyleHidden. You may

find it convenient to remove unneeded ports by setting them to null; e.g.,

myTextNode.setTopPort(null). The Insets property determines how much space there

is on each side of the Label, a JGoText.

The size of the background’s object is determined by the size of the text label. The

Insets property specifies how much bigger to make the background object than the label.

This is particularly useful for shapes such as JGoEllipse or Diamond that would

otherwise cut off part of the text.

If however you want the background’s size to remain constant even when the label’s size

changes due to text changes, you can call setAutoResize(false) to cause the JGoText

label to be Multiline, Wrapping, and Clipped, with a WrappingWidth determined by

the width of the drawable minus the Insets. It will display as much text as will fit.

Usually you will want to call getLabel().setAlignment(JGoText.ALIGN_MIDDLE) to

have the text be centered in the node.

If you create a JGoTextNode by using the zero-argument constructor, it will not have

any parts. You will need to create and assign the parts yourself. If you use the

JGoTextNode constructor that takes a string, the resulting node will have a Label, four

JGoPorts (TopPort, RightPort, BottomPort, LeftPort), and a Background that is a

JGo3DRect.

The Classier example’s ClassNode class, which extends JGoTextNode, also handles

selection and double-click by changing the background color and by displaying much

more information in the text label.

JGo User Guide

44

JGoSubGraph

Often the information model you wish to display to your user can be organized as a graph

whose nodes can themselves be displayed as graphs. One way of handling this is to

implement your application as a multiple-document interface application, where drilling

into a node brings up a new child window showing the detail diagram. This helps keep

individual graphs relatively small and simple.

But another way of displaying graphs within nodes is to show the graphs in-place. The

JGoSubGraph class provides some useful features in this regard—it adds a label that

can be positioned at various spots in the area, a background color, and a border.

A JGoObject property, DragsNode, controls whether an object that is selected can be

dragged around by the user independently of the parent area. JGoSubGraph

automatically sets that property to false for all objects that are added as immediate

children of the area. This allows users to move the nodes around within the

JGoSubGraph.

Each subgraph has a small rectangular handle at the top-left corner. This instance of

JGoSubGraphHandle can be clicked by the user to collapse and expand the subgraph.

All of the children (besides the label and the handle itself) are made not Visible and are

moved to the top-left corner of the subgraph. The label is moved to the middle of the

(now-reduced-size) subgraph node. Collapsing also remembers all of the positions of the

children so that an expansion will restore the original positions of the nodes within the

subgraph.

Nodes

The JGo Package 45 Copyright Northwoods Software

The TestSubGraph class in the Demo1 example demonstrates adding an input and an

output port to a JGoSubGraph, as if the subgraph were like a SimpleNode.

The TestSubGraph2 class, also in Demo1, demonstrates having a single port

representing the subgraph as a whole node, in addition to whatever ports the subgraph’s

child nodes may have. Its Port is an instance of TestSubGraph2Port, which is a

subclass in order to override JGoObject.pick to make the port act as if it were hollow, so

that only the outer margin of the port is active to the user for initiating the drawing of a

new link. The layoutChildren override makes sure the Port’s bounding rectangle covers

the whole subgraph; by default the Port would have had the same bounds as the Handle.

Demo1 furthermore provides a CollapsedObject for the instances of TestSubGraph and

TestSubGraph2 that it creates. The subgraph’s collapsed object is shown instead of the

background and border when the subgraph is collapsed. In Demo1, the collapsed object

is just a JGoImage.

You can specify the location of the Label relative to the subgraph’s children by setting

JGoSubGraph’s LabelSpot and CollapsedLabelSpot properties.

JGoSubGraphs are also resizable by the user. Resizing just modifies the Insets property

(or the CollapsedInsets property if the subgraph is collapsed), so that resizing the whole

subgraph does not resize (or reposition) any of the subgraph’s child nodes.

Although it should be clear that a JGoSubGraph should contain the various child nodes

that are part of it, it should also be the parent of all of the JGoLinks that connect the

subgraph’s children. This is needed so that copying a subgraph will properly copy all of

the links that appear to belong to the subgraph because they connect nodes that appear to

belong to the subgraph. A link between a subgraph’s child node and another top-level

node cannot belong to the subgraph, of course, but will need to belong to the

JGoDocument. And similarly, a link between a subgraph’s node and another subgraph’s

node, if one subgraph is a child of the other one, will need to belong to the “least

common parent” subgraph.

Thus JGoView.newLink and JGoView.reLink automatically call

JGoSubGraphBase.reparentToCommonSubGraph to make sure any newly drawn

links or newly reconnected links belong to the proper subgraph, if any.

Since SWT does not support alpha blending, there is limited support for translucent

backgrounds by setting the Opacity property of JGoSubGraph. However, there appear

to be SWT problems with printing these partially transparent backgrounds.

JGoSubGraph now extends the JGoSubGraphBase class. If you don’t like the design

of the JGoSubGraph class you can design and implement your own by inheriting from

the JGoSubGraphBase class. JGoSubGraphBase is a minimal extension of JGoNode

to support nested nodes and links. It does not implement support for

collapsing/expanding, nor does it even assume there are drawn borders or a Label or a

Port.

SimpleNode

A SimpleNode is slightly more complicated than a JGoIconicNode. It is designed for

“flow”-like applications whose diagrams have a generally horizontal orientation. Instead

JGo User Guide

46

of a single port for the node, there are two distinct ones, one on each side. Often you can

consider one as an “input” and the other as an “output”.

Although SimpleNodes are not normally resizable, if they are resized, only the icon is

resized while maintaining its original aspect ratio. As with JGoIconicNode, the object

passed to initialize is normally a JGoImage, but may actually be any JGoObject.

The label for a SimpleNode is normally editable by the user. You can turn this off by

aSimpleNode.getLabel().setEditable(false).

You can customize the appearance of the ports by setting JGoPort properties such as

PortStyle, Pen and Brush, or PortObject.

GeneralNode

A GeneralNode is a generalization of a SimpleNode. It supports a variable number of

ports on either side of the node. It also can have two labels for the whole node, at the top

and at the bottom. Furthermore each port has its own label, to help identify the port to

the user.

The GeneralNodeLabels and GeneralNodePortLabels are normally editable by the

user. Each port, a GeneralNodePort, is indexed by position on its respective side of the

node.

MultiPortNode

A MultiPortNode is just like a JGoIconicNode, but with a variable number of ports that

can be positioned arbitrarily within the node. When you create a MultiPortNode you

will need to add JGoPorts to the area and position them appropriately.

Nodes

The JGo Package 47 Copyright Northwoods Software

The user can interactively reposition the label (a MultiPortNodeLabel) relative to the

icon. This is useful in allowing the user to position the label so that fewer links cross it.

If you make this label not Selectable, the user will not be able to select and drag the label

independently of the rest of the node.

The MultiPortNodePort class automatically changes its Brush upon a change in the

number of links that are connected to the port. You may wish to modify or override the

linkChange method to suit your application’s needs.

MultiPortNodePort is also interesting in that it implements a MaxLinks property—you

can specify the maximum number of links that the user can connect to the port. For

demonstration purposes this value defaults to three, but you can set it to any value.

MultiTextNode

When you want to display several objects vertically in an area, perhaps separated by lines

and with a drawable shape as the background, the MultiTextNode is appropriate to use.

Each item in the node can have its own ports on each side, and there are ports at the top

and at the bottom of the whole node.

As the name implies, it is typically used to display text strings. The addString method is

a convenient way of setting up a MultiTextNode.

Each MultiTextNode has its own ItemWidth property, which is used to specify the

width of all of the item objects. Calling setItemWidth automatically resets the width of

all of the items present in the node. For convenience, if an item is an instance of

JGoText, the method also sets the text object’s WrappingWidth. However, if you do

not want the text to wrap automatically, you can set the text’s Wrapping property to

false. Because the width of the text is then forced to be the node’s ItemWidth, you will

want to make sure the text’s Clipping property is true, so that text on long lines doesn’t

spill over beyond the bounds of the node.

JGo User Guide

48

ListArea

A ListArea is similar to a MultiTextNode in that they both display an ordered list of

objects. However, ListArea supports the use of scroll bars to be able to display many

items within a relatively small area. Furthermore, ListArea is designed to be oriented

horizontally as well as vertically, with the scroll bar on either side.

The following screen shot shows two ListAreas, one horizontal and one vertical, each

showing three text objects and one polygon object. The text object containing the string

“Item 8” is selected in both areas.

ListAreas can be resized, both programmatically and interactively. The minimum size is

constrained to be large enough to show both the tallest item and the widest item.

Just as with MultiTextNode, each item can have two objects on each side, typically

instances of JGoPort. But ListArea also supports a fourth object for each item, which is

typically used for an icon (see the RecordNode screen shot, below).

You can specify the spacing between the items, the pen used to draw lines between the

items, the rectangle used as the background, and the insets or margin around the list of

items but inside the background. Unlike MultiTextNode, the item objects are not resized

to fit to a particular width. In fact, the whole area will grow to accommodate an item that

has grown in size.

RecordNode

A RecordNode is an area that includes a ListArea and a header and a footer object. It

assumes that each item object really is accompanied by an optional JGoPort, thus

making this area a true node.

Nodes

The JGo Package 49 Copyright Northwoods Software

Of course all of the real flexibility comes from the ListArea class.

Comment

A Comment is a simple JGoArea that just has a JGoText object with a

JGo3DNoteRect as a background object. As the size of the text changes, the bounds of

the comment adjust correspondingly.

For convenience you can access the text string by the Text property. You can also

change whether users can interactively edit the text in a comment by setting the Editable

property.

General Concepts When Defining Nodes

You will probably want to add graphics that are specific to the real object the node

represents. For example, if the node is a shop floor manufacturing machine, there might

be a “Stopped” state that might change the appearance of the node so the operator could

tell at a glance.

Another common addition is a property-editing dialog for each kind of node. Not all of

the interesting information can or should be shown as JGoObjects; for example,

additional status and a lot of controls for that shop floor manufacturing machine probably

belong in a dialog.

When defining your own class derived from JGoArea or JGoNode, you may find it

useful to examine the classes in the examples directory.

Depending on the desired functionality, there are several things that are commonly done

in custom node classes:

 When adding settable fields, consider adding a new Changed hint and overriding

copyNewValueForRedo and changeValue to handle updates with that new

hint, to support undo and redo. (More information is available in the chapter

about Undo and Redo.) You’ll also want to override copyObject.

JGo User Guide

50

 When some of your fields refer to children of the area, you will need to override

copyChildren to make sure that each field is referring to the corresponding

newly copied child object. And you should override removeObjectAtPos to

check for when a child is removed from the area, to make the field reference

invalid.

 If you want to support the standard persistence using SVG XML, be sure to

override SVGReadObject, SVGUpdateReference and SVGWriteObject to

read and write your class’s attributes and references.

 To support drag-and-drop and cut/copy/paste, you should make sure your class is

serializable. Fields that cannot be serialized (or that you don’t want to be

serialized, such as cached information) you should declare transient and make

sure your code can reconstruct the needed information when the field is null in

the copied object.

 You will need to override layoutChildren in order to reposition and/or resize

some or all of the area’s child objects when the area or some of its children

change position or size. The layoutChildren method is called after the area is

resized to do the actual work.

 You may wish to override getLocation and setLocation, if the natural position

of the node isn’t the top-left corner

 You may wish to override setBoundingRect to prevent the object from being

moved to certain positions or from being sized to certain dimensions

 Similarly you may wish to override handleResize to constrain the user’s

interactive resizing of the object, if it is Resizable

 You may wish to override doMouseClick in order to pass on a mouse click to

non-Selectable children, such as JGoText objects that the user wants to edit in-

place.

Please examine the source code for the example nodes for a better understanding of the

many features that JGo makes possible.

Undo and Redo

The JGo Package 51 Copyright Northwoods Software

6. UNDO AND REDO

JGo makes it easy for programmers to build graphical applications that display

relationships between objects and that allow users to change those relationships with little

effort. Because users can make massive changes so easily, a well-designed application

should also allow users to reverse the consequences of unintended changes.

JGo has reimplemented the needed functionality from the undo framework provided by

Swing, and adopted it for all JGo-defined changes to documents and their objects. But if

you want to support undo and redo in your application, you will need to do five things:

 Signal any change to any application-specific document state.

 Perform the undo and redo for any such change.

 Set the undo manager for the document.

 Declare groups of changes that the user will want to consider a single logical

edit.

 Implement the user-interface commands to allow users to perform an undo or a

redo, with the appropriate appearance.

The built-in support for undo in JGo only applies to documents and document objects.

Changes to views, such as selection and view position, are not considered to be edits to

the document, and therefore are not tracked for undo and redo.

UndoableEdit and JGoDocumentChangedEdit

The basic concept is the UndoableEdit, an interface that describes an object that

represents a change to a document and the ability to undo and redo that change.

A change to a document means that some part of the document’s state has been altered.

This includes changing the values of any properties of a document, adding JGoObjects

to a document, removing them, and changing any properties or parts of any document

objects.

If you want to add undo and redo functionality to your application, you must make sure

that your JGoDocument and JGoObject extensions faithfully signal any state changes

by calling JGoDocument.fireUpdate or JGoObject.update respectively, and that your

extensions correspondingly implement the copyOldValueForUndo,

copyNewValueForRedo, and changeValue methods.

JGo User Guide

52

Not all document state need participate in this undo framework. However, you and your

users must be willing to live with the inconsistencies that might result when the user

makes a change and a later undo does not restore the state faithfully. You may find that

some state currently associated with a document really belongs in the app or in the view.

Extending JGoDocument

The Flower example includes a representative document extension: adding a name

property in the ProcessDocument class. The class, with parts elided for clarity, looks

like the following code:

public class ProcessDocument extends JGoDocument

{

 public ProcessDocument()

 { // enable undo/redo memory for this document

 setUndoManager(new JGoUndoManager());

 }

 // Name property

 public String getName()

 {

 return myName;

 }

 public void setName(String newname)

 {

 String oldName = getName();

 if (!oldName.equals(newname)) {

 myName = newname;

 fireUpdate(NAME_CHANGED, 0, null, 0, oldName);

 }

 }

 // copy current state

 public void copyNewValueForRedo(JGoDocumentChangedEdit e)

 {

 switch (e.getHint()) {

 case NAME_CHANGED:

 e.setNewValue(getName());

 return;

 default:

 super.copyNewValueForRedo(e);

 return;

 }

 }

Undo and Redo

The JGo Package 53 Copyright Northwoods Software

 // actually perform the undo or redo

 public void changeValue(JGoDocumentChangedEdit e, boolean undo)

 {

 switch (e.getHint()) {

 case NAME_CHANGED:

 setName((String)e.getValue(undo));

 return;

 default:

 super.changeValue(e, undo);

 return;

 }

 }

 // Event hints

 public static final int NAME_CHANGED = JGoDocumentEvent.LAST+1;

 // State

 private String myName = "";

}

The getName and setName methods of course define the name property for the

document. What is noteworthy is that setName makes sure that there really is a change

before setting the internal myName field and then calling fireUpdate.

The call to fireUpdate passes a hint, NAME_CHANGED, and the old value, held in

oldName. It is important that the hint be unique within the class and all of its

superclasses.

It is also required that the updating occur after the change has happened, and that the

update event listener is able to retrieve the previous value. Normally the previous value

is passed along as part of the document event. The reason for the requirement that the

previous value be accessible is that the document listener responsible for undo/redo needs

to record the values both before and after an edit. These values are used to construct a

JGoDocumentChangedEdit, which implements UndoableEdit.

JGoDocumentChangedEdit gets the before and after values from the

JGoDocumentEvent that is generated from a change’s call to fireUpdate. In most cases

the previous value is just fine; however if the value is a reference to an object that might

be modified by further edits, it is important that the JGoDocumentChangedEdit keeps a

true copy of the old value, rather than just a reference to something whose relevant state

may have changed. Thus the JGoDocumentChangedEdit constructor calls the

copyOldValueForUndo method, which allows the class to decide whether the previous

value needs to be copied for safekeeping. Many classes do not have any kinds of changes

where the previous value will need to be copied, so they do not bother to override

copyOldValueForUndo.

JGoDocumentChangedEdit gets the new value by calling the copyNewValueForRedo

method. Each class that extends the undoable document state must override this method

to handle the class-specific changes to get the new (current) values. In the example

JGo User Guide

54

above, it just needs to remember the value of getName(). For change hints that don’t

belong to this class, the method should call the super method.

Finally, each class must override changeValue in order to perform the undo or redo,

depending on the value of the boolean argument. For convenience the

JGoDocumentChangedEdit.getValue method also takes the same undo parameter to

decide whether to return the old/before value or the new/after value. In the example

above, the method just needs to call setName to effect the change. Again, for change

hints not belonging to this class, the method calls the super method.

For efficiency and for convenience the previous value of a JGoDocumentEvent, and the

old and new values of a JGoDocumentChangedEdit are not simply Objects, but a

pairing of an int and an Object. For those properties that can be represented efficiently

by an int, you can use that instead of boxing the integer by creating an Integer. (For the

common case of boolean values, boolean versions of these methods are provided by

JGoDocumentChangedEdit.) For those properties that can be conveniently represented

by an integer and an object (for example a change to an element of a vector), you can use

both.

Extending JGoObject subclasses

For a change to an object, the hint is JGoDocumentEvent.CHANGED. However, there

is no way for the document to know how to remember the old or new values for any

particular sub-hint, nor how to perform that particular state transition. Instead those

responsibilities are transferred to JGoObject, which has the same

copyOldValueForUndo, copyNewValueForRedo, and changeValue methods.

The implementation is very similar to that for adding properties to documents. What

follows is the definition of the ListArea example class, stripped down to essentials

regarding the insets property.

public class ListArea extends JGoArea

{

 public JGoObject copyObject(JGoCopyEnvironment env)

 {

 ListArea newobj = (ListArea)super.copyObject(env);

 if (newobj != null) {

 . . .

 newobj.myInsets.top = myInsets.top;

 newobj.myInsets.left = myInsets.left;

 newobj.myInsets.bottom = myInsets.bottom;

 newobj.myInsets.right = myInsets.right;

 }

 return newobj;

 }

 // extra space around the edges

 // the space should include room for the scroll bar

 public Insets getInsets()

 {

Undo and Redo

The JGo Package 55 Copyright Northwoods Software

 return myInsets;

 }

 public void setInsets(Insets x)

 {

 Insets s = getInsets();

 if (!s.equals(x)) {

 Insets oldInsets=new Insets(s.top,s.left,s.bottom,s.right);

 myInsets.top = x.top;

 myInsets.left = x.left;

 myInsets.bottom = x.bottom;

 myInsets.right = x.right;

 update(InsetsChanged, 0, oldInsets);

 layoutChildren();

 }

 }

 public void copyNewValueForRedo(JGoDocumentChangedEdit e)

 {

 switch (e.getFlags()) {

 . . .

 case InsetsChanged: {

 // copy value so it doesn't get clobbered later

 Insets s = getInsets();

 e.setNewValue(new Insets(s.top,s.left,s.bottom,s.right));

 return; }

 default:

 super.copyNewValueForRedo(e);

 return;

 }

 }

 public void changeValue(JGoDocumentChangedEdit e, boolean undo)

 {

 switch (e.getFlags()) {

 . . .

 case InsetsChanged:

 setInsets((Insets)e.getValue(undo));

 return;

 default:

 super.changeValue(e, undo);

 return;

 }

 }

JGo User Guide

56

 // Event hints

 public static final int InsetsChanged = JGoDocumentEvent.LAST +

10033;

 // State

 private Insets myInsets = new Insets(1, 4, 1, myBarSize + 4);

}

Note that the setInsets method makes a copy of the old value before remembering the

new value (also by copying, just in case the argument Insets value were to be modified

independently). This copy is needed in order to pass the previous value to the

JGoObject.update method.

Remember that the properties should also be copied in the copyObject method.

Handling Big Changes

Keeping track of all these edits is simple enough, but incurs a lot of overhead for

detecting the change and constructing the edit. What should you do when you know you

might be making a lot of changes and don’t want the repeated overhead?

In the past the only such mechanism was to suspend updates. Calling

setSuspendUpdates(true) would turn off all event notification. After all of the batched

changes were done, you would call setSuspendUpdates(false) to re-enable event

notification, and listeners would have to assume anything and everything had possibly

changed. This was true both at the JGoDocument level as well as the JGoObject level.

Suspending updates is still possible, but with the introduction of undo managers, this is

more complicated. The problem is that implementing undo requires getting the state

before the changes. Turning off event notification means that there’s no way to keep

track of any changes that are going on. Trying to save all state at the time of the call to

setSuspendUpdates(true) would be horribly inefficient, particularly for documents.

Instead we need to save very targeted state, depending on the kinds of changes that are

expected to occur during the update suspension.

The mechanism that JGo supports is analogous to the fireUpdate/update mechanism

used for notification after a change. The fireForedate/foredate methods are exactly like

fireUpdate/update except they should be called just before a change. For obvious

reasons, the foredate methods don’t need any previous value parameters.

Here is an example of how foredating can be done:

// care about undo, so need to call fireForedate here,

// so that the before-layout geometries of all top-level

// objects can be remembered

fireForedate(JGoDocumentEvent.ARRANGED, 0, null);

setSuspendUpdates(true);

layoutWholeDiagram();

setSuspendUpdates(false);

// care about undo/redo, so need to call fireUpdate here;

// don’t need to pass previous arrangement here

Undo and Redo

The JGo Package 57 Copyright Northwoods Software

fireUpdate(JGoDocumentEvent.ARRANGED, 0, null, 0, null);

The foredate methods create JGoDocumentEvents whose isBeforeChanging predicate

returns true. Listeners that don’t care about notification before a change should ignore

these events; for example, JGoView ignores these events. But JGoUndoManager,

described below, uses them to remember the state before events.

The copyOldValueForUndo method, when invoked for the ARRANGED update, is

responsible for getting the old/previous state. Since that state is not passed in via the

previous value parameters, it must get it from the edit produced by the foredate event. It

can do that by calling the findBeforeChangingEdit method on

JGoDocumentChangedEdit.

 public void copyOldValueForUndo(JGoDocumentChangedEdit e)

 {

 switch (e.getHint()) {

 . . .

 case JGoDocumentEvent.ARRANGED:

 // For an update, there’s no previous value info passed in.

 // However, that information is instead available in the

 // earlier JGoDocumentChangedEdit created by the foredate.

 // In the after/update case, we want to move the previous

 // state information from the BeforeChanging Edit to this

 // Edit.

 if (!e.isBeforeChanging()) {

 JGoDocumentChangedEdit before =

 e.findBeforeChangingEdit();

 if (before != null) {

 e.setOldValue(before.getNewValue());

 }

 }

 return;

 }

 }

The copyNewValueForRedo and changeValue methods are implemented normally for

the ARRANGED case. The copyNewValueForRedo method copies all the current node

and link geometries into a vector. The changeValue method sets all the node and link

geometries given the information in a vector.

JGoUndoManager, CompoundEdits and Transactions

The edits implemented by JGoDocumentChangedEdit are very detailed, specific

changes that can be undone and redone. But when a user drags a selection, the user is

changing the positions of possibly thousands of objects. Clearly the user will not expect

that an undo command only move one of those objects back to its earlier location.

The Swing package offers the CompoundEdit class for keeping track of an ordered list

of UndoableEdits. Each compound edit is composed of all the edits that occur due to a

JGo User Guide

58

particular user gesture or command. The compound edits in turn are managed by the

undo manager.

JGoUndoManager is an extension of UndoManager. It implements

JGoDocumentListener so that it can detect all of the changes that happen to a

document, and then record them by producing and collecting

JGoDocumentChangedEdits in the JGoUndoManager’s current CompoundEdit.

To control when a compound edit is finished and another one should be started,

JGoDocuments support the notion of a transaction. Call startTransaction before any

changes occur and call endTransaction afterwards. The first detected document change

will open up a new compound edit. All succeeding edits are added to this current

compound edit. A call to endTransaction will close up the current compound edit and

add it to the undo manager’s list of undoable edits.

Generally it is the view that is naturally responsible for detecting the start of a user action

or command and knowing when it is finished. Thus the default implementations of many

commands in JGoView start and end transactions. These methods include:

 copy (start and end)

 cut (start and end)

 paste (start and end)

 drop (start and end)

 doMoveSelection (start and end)

 deleteSelection (start and end)

 startNewLink and startReLink (start)

 newLink, noNewLink, reLink, and noReLink (end)

 startResizing (start)

 handleResizing (end)

 doCancelMouse and other cancel methods (end)

In addition, some methods such as JGoText.doStartEdit and doEndEdit enclose editing

activity within a transaction. However, any code anywhere can start and end transactions

on a document. When you add your own commands to your application, you will

probably want to wrap any document changing code with a transaction.

Transactions may be nested (e.g. start, start, end, end). Only the final transaction end

causes the compound edit to be closed and added to the undo manager’s list. Beware

calling startTransaction without a corresponding call to endTransaction, perhaps due

to an exception.

A call to endTransaction requires a String argument that describes that particular

transaction to the user. This is the “presentation name”. JGoUndoManager provides

default presentation names for the predefined transactions. These are the only strings in

the JGo package that should be localized for international applications.

Undo and Redo

The JGo Package 59 Copyright Northwoods Software

Each document that supports undo must have a JGoUndoManager. Normally each

document will have its own undo manager, but when there are interrelated documents

where one change affects other documents, you may want to share one undo manager

amongst several documents. Calling JGoDocument.setUndoManager automatically

makes the manager a listener on that document.

A call of endTransaction(false) will discard the current compound edit, rather than

adding it to the undo manager. Unlike a transactional database system, aborting a

transaction in JGo does not automatically undo all of the changes that may have

happened since the transaction start. This is because there might not be an undo

manager, or because not all changes are being recorded.

Another difference between transactions with JGo documents and database systems is

that there is no prohibition on examining or even modifying documents or their objects

without a preceding call to startTransaction. There is no practical way to enforce the

prohibition of reading the data structures.

Defining Menu Commands

JGoUndoManager provides implementations of undo, redo, canUndo, canRedo, and

discardAllEdits, that user interface implementations should call.

JGoDocument provides these same methods by delegating to the document’s undo

manager, if one exists.

The following code is taken from the Flower example. Adding user-interface support for

undo entails calling canUndo to enable/disable the command and calling undo to

perform the action. In addition, you may wish to customize the menu item text with the

presentation name.

 JMenuItem UndoMenuItem = null;

 AppAction UndoAction = new AppAction("Undo", this) {

 public void actionPerformed(ActionEvent e)

 {

 getView().getDocument().undo();

 AppAction.updateAllActions();

 }

 public boolean canAct()

 {

 return super.canAct() &&

 (getView().getDocument().canUndo());

 }

 public void updateEnabled()

 {

 super.updateEnabled();

 if (UndoMenuItem != null && getView() != null)

 UndoMenuItem.setText(

JGo User Guide

60

 getView().getDocument().

 getUndoManager().getUndoPresentationName());

 }

 };

This code calls getView() to get the currently open child window.

Performance Hints

The JGo Package 61 Copyright Northwoods Software

7. PERFORMANCE HINTS

When there are only tens or hundreds of objects in a document, performance is rarely a

problem. However, when dealing with many hundreds or thousands of objects, the

programmer should be aware of performance issues.

Don't add an area (node) to the document until the last possible moment—as objects are

added to the area and as they are modified, no document listeners will be notified until

after the area is added to the document.

Another way to avoid a lot of updates temporarily is to use

JGoObject.setSuspendUpdates(true) or JGoDocument.setSuspendUpdates(true).

These calls can temporarily avoid notifying listeners about change events, for an

individual object or for a whole document, respectively. Be sure to re-enable listener

notification by calling the method again with a false value.

Support for undo and redo slows down editing because the undo manager must listen for

document events and construct edits for each change. By default a document does not

have an undo manager, so you should call JGoDocument.setUndoManager only when

needed. Alternatively you can set the document’s SkipsUndoManager property,

assuming it is not confusing for the user to do so.

Those undo edits can take up a lot of memory. Depending on your application design,

sometimes you may wish to call discardAllEdits to save on virtual memory occupied by

all of the edits. This is commonly done when the document is saved. You can also

change how much is saved by overriding skipEvent on JGoUndoManager, or by calling

setLimit.

Try to avoid allocating many Points, Dimensions, and Rectangles that just get thrown

away. For example, to get an object’s X position, call getLeft() instead of

getTopLeft().x.

Interactively dragging many objects together can be sluggish if there are a lot of links

connected to the nodes being moved. This is particularly true when the calculation of

new strokes for all those links is expensive, such as when the JGoLink properties

AvoidsNodes and JumpsOver and Orthogonal are true. It can also be true for very

complex nodes, such as RecordNodes. You can avoid this continuous overhead during

dragging by setting the JGoView property DragsRealtime to false. The move, and thus

the recomputation of all attached links, is only done when the user finishes the drag.

Don’t use Sun’s JVM/JRE 1.4.0 on Windows. See the …README.txt file for details.

We recommend using 1.4.1 or later instead.

JGo User Guide

62

8. JGO SUPPORT FOR XML AND SVG

JGo provides support for Extensible Meta-Language (XML) and Scalable Vector

Graphics (SVG) in several ways:

 Write-only support of SVG using the Batik libraries and

com.nwoods.jgo.examples.SVGGoView

 Write-only support of SVG using the JAXP libraries and com.nwoods.jgo.svg

 Read/write support of JGo XML using the JAXP libraries and

com.nwoods.jgo.svg

 Read/write support of extended SVG (SVG with JGo XML extensions) using the

JAXP libraries and com.nwoods.jgo.svg

 Read/write support of your own custom XML format using the JAXP libraries as

demonstrated in the com.nwoods.jgo.example.Flower sample application

Each of the above approaches is demonstrated in the com.nwoods.jgo.Flower sample

application and each will be discussed further in the following sections.

SVG Support using Batik and SVGGoView

The generation of SVG using com.nwoods.jgo.examples.SVGGoView relies on the

Batik library to reproduce everything drawn to the Graphics2D object associated with a

JGoView as SVG. This technique captures all graphical output at a very low level.

The advantages of this technique include its simplicity and visual accuracy.

The disadvantages of this technique include the inability to read the generated SVG to

reproduce the original JGoDocument, and inability to extend the generated SVG to

easily include your own elements, attributes, scripts, etc.

To create an SVG document using SVGGoView, simply create a new instance of

SVGGoView and set its Document property to the JGoDocument to be generated as

SVG. Then call the generateSVG method to perform the output. The following method

from the ProcessDocument class in the Flower sample application illustrates this

process:

 public void storeSVG2(OutputStream outs)

 throws IOException, UnsupportedOperationException

 {

 SVGGoView svgView = new SVGGoView();

 svgView.setDocument(this);

JGo Support for XML and SVG

The JGo Package 63 Copyright Northwoods Software

 svgView.generateSVG(outs);

 }

If your principal requirement is the write-only creation of SVG documents from JGo for

viewing by other applications or browsers, SVGGoView may be your best solution.

XML and SVG Support Using JAXP and the JGo SVG Package

The generation of SVG using the JGo SVG package (com.nwoods.jgo.svg) uses the JGo

infrastructure to generate SVG and XML elements closely associated with high level JGo

object classes.

The advantages of this technique include its extensibility and its ability to allow output

files to be read back into JGo to precisely reproduce the original JGoDocuments.

The disadvantages of this technique include a small additional complexity and a slightly

less accurate rendering of the JGoDocument as SVG.

The Java API for XML Parsing (JAXP) version 1.2 or later, available from Sun

Microsystems (java.sun.com), is a prerequisite for the use of the JGo SVG Package. The

libraries are built into the 1.4 and later releases of Java.

To create an SVG document using the JGo SVG package, simply create a new instance of

DefaultDocument and call the SVGWriteDoc method to perform the output. The

following method from the ProcessDocument class in the Flower sample application

illustrates this process:

public void storeSVG1(OutputStream outs,

 boolean genXMLExtensions,

 boolean genSVG)

 {

 DefaultDocument svgDomDoc = new DefaultDocument();

 svgDomDoc.setGenerateJGoXML(genXMLExtensions);

 svgDomDoc.setGenerateSVG(genSVG);

 svgDomDoc.SVGWriteDoc(outs, this);

 }

The two properties (GenerateJGoXML and GenerateSVG) shown in the above

example control the classes of elements generated by the JGo SVG package. JGo XML

elements are used to describe the JGo classes and their properties. SVG elements are used

to render the JGo graphical elements as SVG. When using the JGo SVG package, you

can determine whether to generate either or both of these element classes by specifying

boolean values for these properties. If only isGenerateJGoXML() is true, an XML

document will be generated that faithfully serializes a JGoDocument for read/write

purposes, but no SVG elements will be generated and the document will not be viewable

by an SVG viewer. If only isGenerateSVG() is true, an SVG document will be

generated that allows the JGoDocument to be viewed by SVG viewers, but the

document will not able to be read back into JGo to recreate the original JGoDocument.

If both isGenerateJGoXML() and isGenerateSVG() are true, an SVG document will be

created which is both viewable by SVG viewers and is able to be read back into JGo to

reproduce the original JGoDocument.

JGo User Guide

64

As mentioned earlier, one of the principal advantages of this technique is the ability to

extend both the generated SVG and the JGo XML extensions used for serialization

purposes. In order to create these extensions, you typically need only to override the

SVGWriteDoc and SVGReadObject methods on any subclass of JGoObject you

create. When DefaultDocument.SVGWriteDoc is invoked, the SVGWriteObject

method is automatically invoked on the JGoDocument and each of the JGoObjects

contained in that document. By overriding the SVGWriteObject method, you can easily

add your own information. Similarly, when reading an SVG or XML file via

DefaultDocument.SVGReadDoc, you can override SVGReadObject to look for your

extensions and recreate the information in your own objects.

The SVGReadObject and SVGWriteObject methods deal with DomDoc and

DomElement parameters. DomDoc is an interface similar to org.w3c.dom.Document.

DomElement is an interface similar to org.w3c.dom.Element. These interfaces allows

the com.nwoods.jgo package to provide methods that manipulate org.w3c.dom objects

while not requiring the org.w3c.dom package to be present in order to build or use

com.nwoods.jgo. Methods such as DomDoc.createElement,

DomElement.setAttributes and DomElement.appendChild allow you to easily create

new XML or SVG elements and attributes and add them to your document.

The implementation of these interfaces is provided by the com.nwoods.jgo.svg package.

The default implementation of com.nwoods.jgo.DomDoc is

com.nwoods.jgo.svg.DefaultDocument. The default implementation of

com.nwoods.jgo.DomElement is com.nwoods.jgo.DefaultElement. You should be

able to accomplish whatever you need through methods of the DomDoc and

DomElement interfaces, however if you require access to the org.w3c.com objects

themselves, that can be accomplished by casting your DomDoc or DomElement object

to DefaultDocument or DefaultElement and then invoking the

DefaultDocument.getDocument or DefaultElement.getElement methods to get the

actual org.w3c.dom objects.

The following code shows the implementation of JGoRectangle.SVGWriteObject

which is responsible for generating both the XML and SVG elements necessary to

represent a JGoRectangle object.

 public void SVGWriteObject(DomDoc svgDoc,

 DomElement jGoElementGroup)

 {

 // Add JGoRect element

 if (svgDoc.JGoXMLOutputEnabled()) {

 DomElement jGoRect = svgDoc.createJGoClassElement(

 "com.nwoods.jgo.JGoRectangle", jGoElementGroup);

 }

 // Add SVG rect element

 if (svgDoc.SVGOutputEnabled()) {

 DomElement element =

 (DomElement)svgDoc.createElement("rect");

 // Add attributes to SVG <rect> element

JGo Support for XML and SVG

The JGo Package 65 Copyright Northwoods Software

 SVGWriteAttributes(element);

 jGoElementGroup.appendChild(element);

 }

 // Have superclass add to the JGoObject group

 super.SVGWriteObject(svgDoc, jGoElementGroup);

 }

Note the use of the convenience method DomDoc.createJGoClassElement. This

method will create a DomElement with the tag “JGoClass” and a “class” attribute

specifying the class name and append it as the next child node of the specified

DomElement. The class name supplied must be accurate and complete as it will be used

to create an object of the correct type when the SVG XML file is read back in. Although

the example shown above does not apply any attributes to the created <JGoClass>

element, attributes could easily have been added via the DomElement.setAttribute

method. Finally, note that this method calls its superclass so that the superclass can add

its own elements and attributes.

When reading an SVG or XML file using DefaultDocument.SVGReadDoc method, any

<JGoClass> element encountered will be automatically recognized by the

DefaultDocument.SVGReadElement method. The class attribute of this element will

be read and used to create a new instance of this object class from the class name. The

SVGReadObject method will then be invoked on the newly created instance. Attributes

of this element should be read by the DomElement.getAttribute method. Finally, this

method should call its superclass so that the superclass can read its own elements and

attributes.

Typically, the attribute values specified in SVGReadObject and SVGWriteObject can

be stored as String values. Occasionally, however, the attribute value may need to be a

reference to another JGoObject specified in the SVG or XML output. This can be

difficult due to the fact that the referenced JGoObject may or may not have yet been

written out to the XML or SVG document when the referencing object is written. The

DomDoc.registerReferencingNode method has been created as a convenience for this

situation. In SVGWriteObject when writing such an attribute value, call

registerReferencingNode specifying the referencing DomElement, the Object being

referenced, and the attribute name to use to hold the reference. The DomDoc will

maintain a table of these references and update the DomElements after all the objects

have been created in the DomDoc but before DomDoc has been rendered as SVG or

XML.

When reading an object reference attribute in SVGReadObject, simply call

DomDoc.registerReferencingObject specifying the referencing Object and the name

and value of reference attribute. The DomDoc will maintain a table of these references

and will invoke JGoObject.SVGUpdateReference passing a string identifying the

reference attribute name and the referenced Object once all objects have been created.

You must override SVGUpdateReference if your subclass has reference to other

Objects that are to be saved and restored from SVG or XML.

JGo User Guide

66

The following example uses a JGoRectangle to illustrate the format of a generated SVG

JGoObject. Note that all of the output shown below is automatically generated by JGo.

Your application need only be concerned with your own extensions.

<g>

<JGoClass class="com.nwoods.jgo.JGoRectangle"\>

<rect height="75" style="stroke:black;stroke-

width:1;fill:rgb(255,0,0);" width="75" x="65" y="71"/>

<JGoClass class="com.nwoods.jgo.JGoDrawable"

drawablebrush="jgoid1" drawablepen="jgoid2"

embeddedpenbrush="false"/>

<JGoClass class="com.nwoods.jgo.JGoObject" obj_flags="1054"/>

</g>

Note that the entire JGoObject is enclosed in a group (<g>). Each subclass of the

JGoObject is described by a <JGoClass> element, starting with the most specific

class and moving to the more general. Each <JGoClass> element has a "class" attribute

that defines the class name. Each <JGoClass> element may also have several other

attributes that uniquely describe that state of that class. Following the <JGoClass>

element, each class may also generate any other elements that are required, including

representations of contained objects and standard SVG elements such as the <rect>

element shown in the above example. The information contained in the <JGoClass>

elements allows us to accurately save and restore all the information in a particular

JGoObject subclass.

For a working example of using the JGo SVG package to read and write XML or SVG

files, refer to the com.nwoods.jgo.examples.Flower sample application. Look for

sections of code in ProcessDocument commented with /*SVG …*/. Remove the

comments to activate the contained code sections and rebuild the Flower sample

application. The “file/save as” and “file/open” menu items illustrate saving and restoring

the application data in a variety of formats.

For a formal description of the XML elements and attributes written by the JGo SVG

package, refer to the file com.nwoods.jgo.svg/xsvg.dtd.

Custom XML Support Using JAXP

The generation of your own custom XML using only the Java API for XML Parsing

(JAXP) available from Sun Microsystems (java.sun.com) is another viable alternative.

The JAXP libraries are built into version 1.4 and later releases of Java.

The advantages of this technique include its conciseness, as well as the ability to exercise

complete control over the XML content.

The disadvantages of this technique include the difficulty of generating all your own

SVG elements (if SVG output is necessary) and a slight additional complexity.

It is often unnecessary to save all the state information of every object in JGo (as is done

by the JGo SVG package). Typically, one needs only to save enough information to

allow your application to recreate the JGo objects and other application information.

To create an XML document using JAXP, you must first create an org.w3c.Document

object. Typically, you would next traverse all of the top-level JGoObjects in your

JGoDocument and populate the Document with org.w3c.Element objects, with

JGo Support for XML and SVG

The JGo Package 67 Copyright Northwoods Software

appropriate properties set on these objects to represent those JGoObjects. Finally, you

would create a javax.xml.transform.Transformer object to transform the Document to

XML output. The following method from the ProcessDocument class in the Flower

sample application illustrates this process:

 public void storeXML(OutputStream outs)

 throws IOException, UnsupportedOperationException

 {

 Document document = null;

 try {

 DocumentBuilderFactory factory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 document = builder.newDocument();

 Element process =

 (Element)document.createElement(processTag);

 process.setAttribute("name", getName());

 process.setAttribute("location", getLocation());

 process.setAttribute("lastnodeid",

 Integer.toString(myLastNodeID));

 process.setAttribute("ortholinks", isOrthogonalFlows()

 ? "1" : "0");

 document.appendChild(process);

 // first produce all of the nodes

 JGoListPosition pos = getFirstObjectPos();

 while (pos != null) {

 JGoObject obj = getObjectAtPos(pos);

 pos = getNextObjectPosAtTop(pos);

 if (obj instanceof ActivityNode) {

 ActivityNode node = (ActivityNode)obj;

 Element act = document.createElement(activityTag);

 act.setAttribute("id", Integer.toString(node.getID()));

 act.setAttribute("type",

 Integer.toString(node.getActivityType()));

 act.setAttribute("x",

 Integer.toString(node.getLeft()));

 act.setAttribute("y", Integer.toString(node.getTop()));

 act.setAttribute("text", node.getText());

 process.appendChild(act);

 }

 }

JGo User Guide

68

 // then produce all of the links

 pos = getFirstObjectPos();

 while (pos != null) {

 JGoObject obj = getObjectAtPos(pos);

 pos = getNextObjectPosAtTop(pos);

 if (obj instanceof FlowLink) {

 FlowLink link = (FlowLink)obj;

 Element flow = document.createElement(flowTag);

 flow.setAttribute("from",

 Integer.toString(link.getFromNode().getID()));

 flow.setAttribute("to",

 Integer.toString(link.getToNode().getID()));

 flow.setAttribute("text", link.getText());

 process.appendChild(flow);

 }

 }

 } catch (ParserConfigurationException pce) {

 // Parser with specified options can't be built

 pce.printStackTrace();

 }

 if (document != null) {

 try {

 TransformerFactory transformerFactory =

 TransformerFactory.newInstance();

 Transformer serializer =

 transformerFactory.newTransformer();

 serializer.setOutputProperty(OutputKeys.METHOD, "xml");

 serializer.setOutputProperty(OutputKeys.INDENT, "yes");

 serializer.transform(new DOMSource(document),

 new StreamResult(outs));

 } catch (Exception x) {

 x.printStackTrace();

 }

 }

 }

A similar set of operation are required to read back in the generated custom XML. Refer

to the ProcessDocument.loadXML method for a detailed example.

The com.nwoods.jgo.examples.Flower sample application demonstrates this technique

(as well as all the other techniques described in this chapter). Look for sections of code

in ProcessDocument commented with /*XML …*/. Remove the comments to activate

the contained code sections and rebuild the Flower sample application. The “file/save as”

and “file/open” menu items illustrate saving and restoring the application data in a variety

of formats.

Building a Sample Application Using JGo Beans

The JGo Package 69 Copyright Northwoods Software

9. BUILDING A SAMPLE APPLICATION USING JGO BEANS

Building a JGo application using a standard Java development environment and the JGo

Java beans (JGoView, JGoPalette, and JGoOverview) is quite simple. Although the

precise steps required differ according to your specific development environment, the

general concepts remain the same:

 Register the JGo beans with the development environment

 Create a new project

 Visually edit the user interface as required

o Drag & drop JGoView, JGoPalette, and/or JGoOverview beans to your

user interface

o Edit bean properties

 Add event handlers to customize user interface behavior

o Add JGo documentChanged listeners

o Add JGo viewChanged event listeners

In this chapter we will describe the general process of creating a simple JGo application.

Specific examples will refer to the Eclipse development environment, including the

Visual Editor (VE) plug-in, although the general concepts should apply equally well to

any Java development environment with support for Java beans. The complete source

code for this application is also included in the JGo kit under the

…/jgo/com/nwoods/jgo/examples/SampleAppSWT folder.

The sample application will provide a palette of objects (JGoPalette), including JGo

sample objects as well as objects customized according to the needs of our application.

The sample will support drag and drop of these objects from the palette to a scrolled,

scalable window (JGoView). A third pane of the application will provide a miniature

overview window showing the entire canvas and the region currently visible in the

JGoView window. The application will provide cut, copy, and paste clipboard support,

undo and redo, serialization to and from an extended Scalable Vector Graphics (SVG)

XML format file, and automatic layout of the graph produced by our users. Double-

clicking on any item in the JGoView window will cause a dialog to appear displaying

more detailed properties for that object. Naturally, this is only one instance of the kinds

of applications that can be created using JGo and the JGo beans, but hopefully this one

instance will provide some insight into development commonly done for many JGo

applications.

JGo User Guide

70

An example use of the finished application follows:

Register the JGo Beans with the Development Environment

We start by registering the JGo beans with the development environment. To register

beans with a development environment we must first define the library containing the

beans. JGo provides three different bean classes, JGoView, JGoPalette, and

JGoOverview. All three of these beans are defined in the com.nwoods.jgo package and

are packaged in the JGo.jar file. In addition, this particular sample application will

utilize the com.nwoods.jgo.layout and com.nwoods.jgo.svg packages. These packages

do not define any additional beans, but provide the auto-layout and XML/SVG

serialization capabilities demonstrated in the later steps of the sample application. These

packages are packaged in the JGoLayout.jar and JGoSVG.jar files, respectively.

In the Eclipse environment, we need only insure that the above JAR files are included in

the Java Build Path.

For new projects, this can be accomplished by using the File/New/Project… menu entry

and selecting the “Libraries tab” on the “Java Settings” page of the wizard. Press the

“Add External JARs” button and select the JGo JAR files specified above.

For existing projects, this can be accomplished by selecting Project/Properties from the

menu. In the pop-up window that appears, select “Java Build Path” in the window on the

left and select the “Libraries” tab. Press the “Add External JARs” button and select JGo

JAR files specified above.

Visually Construct the User Interface

Once the JGo JAR files have been added to the Eclipse project’s java build path, we can

begin creating our JGo sample application.

Building a Sample Application Using JGo Beans

The JGo Package 71 Copyright Northwoods Software

Eclipse SWT applications will contain one or more top-level containers, typically either

Shells or Composites. A hierarchy of visual components will be added to these top-level

containers to create the user interface that our end-users will see. Because user interfaces

are inherently visual, most Java development environments enable the developer to

construct the user interface visually rather than by directly writing code. Typically, the

components of the interface are dragged from component palette and dropped on the user

interface under construction.

To build our sample application we will start by creating a new project that includes the

SWT libraries and the JGo libraries. In Eclipse with the VE visual editor, this can be

accomplished by first selecting the “File/New/Project…” menu entry and selecting the

“Java Project” wizard. Fill in the “Project Name” and press the “Next” button. Select the

“Libraries” tab and press the “Add Library” button. Select the “Standard Widget Toolkit

(SWT)” and press the “Next” button and then the “Finish” button. Next press the “Add

External JARs” button and add the JGo JAR files (JGo.jar, JGoLayout.jar, and

JGoSVG.jar). Click the “Finish” button to conclude the “Java Project” wizard.

Next, we will add a single top-level Shell component to the project by selecting the

File/New/Visual Class” menu entry. Specify the “Source Folder” for the project and

specify “SWT Shell” as the style of the component. Specify “SampleAppSWT” as the

name of the new Java class to create and select “public static void main” and “Inherit

abstract methods” as the method subs to be created. Click the “Finish” button to

conclude the “Visual Class” wizard. A new class named “SampleAppSWT” is created

with a main method that creates an instance of a Shell component named sShell..

At this point you should see a divided editing window showing the visual editor for

SampleAppSWT.java on the top and the Java code that implements that appearance on

the bottom. The Eclipse VE Palette window should also be visible containing the SWT

controls and SWT containers that can be selected and dropped on the visual editor.

We want to divide the SampleAppSWT Shell into two separate panes by dripping a

SashForm onto the sShell. Click on sShell in the visual editor and specify FillLayout

for the layout property shown in the property editor. Click on SashForm in the SWT

Containers section of the palette and drop a SashForm on sShell in the visual editor. A

SashForm with the default name sashForm is created as a child of sShell. Specify

BORDER for the border property of sashForm. Specify HORIZONTAL for the

orientation property of sashForm.

Next we sub-divide the left pane of the SashForm into two panes by dropping another

SashForm onto the first SashForm. Another SashForm named sashForm1 is created as

a child of sashForm. Specify BORDER for the border property of sashForm1. Specify

VERTICAL for the orientation property of sashForm1.

Next, we will drag and drop the JGo beans into these panes. We will place the

JGoOverview bean in the upper-left pane, the JGoPalette bean in the lower-left pane,

and the JGoView bean in the right pane.

Select “Choose Bean” in the visual editor palette. Select SWT for the qualifier and type

“jgo” into the name field to list all SWT beans starting with the characters “jgo”. Select

the JGoView bean and press OK. Now drop the JGoView on sashForm by moving the

cursor slowly over the edge of the window displayed in the visual editor. Look for a tool

tip to be displayed indicating the cursor is over sashForm (not sashForm1) and then click

JGo User Guide

72

to drop the JGoView onto sashForm. A JGoView named jGoView is created as a child

of sashForm.

Select “Choose Bean” in the visual editor palette. Select SWT for the qualifier and type

“jgo” into the name field to list the SWT beans starting with “jgo”. Select the

JGoOverview bean and press OK. Drop the JGoOverview onto sashForm1 by moving

the cursor slowly over the edge of the left pane of the window. Look for a tool tip to be

displayed indicating the cursoir is over sashForm1 and then click to drop the JGoPalette

onto sashForm1. A JGoOverview named jGoOverview is created as a child of

sashForm1.

Select “Choose Bean” in the visual editor palette. Select SWT for the qualifier and type

“jgo” into the name field to list the SWT beans starting with “jgo”. Select the

JGoPalette bean and press OK. Drop the JGoPalette onto sashForm1. A JGoPalette

named jGoPalette is created as a child of sashForm1.

The resulting window should appear as follows:

Using the property editor in the Eclipse Visual Editor, modify the “showSampleItems”

property of the JGoPalette to be “true”. This will cause a small variety of sample nodes

to be shown in the JGoPalette.

Modify the “verticalScroll” property of the JGoPalette to be “V_SCROLL”. This will

cause a vertical scroll bar to appear in the palette if the window is not large enough to

display all the objects in the palette.

Next we would normally modify the “observed” property of the JGoOverview to be the

name of the JGoView component by using the property editor. However, the JGoView

instance must be created before setting it as the object of the Observed property. Because

of the order in which these objects are created by the Eclipse visual editor, we must set

this property by adding a call to setObserved() in the createSashForm() method of

SampleAppSWT. In addition, we’ll add some code to this method to specify the relative

size of the SashForm panes. The resulting createSashForm() method will look as

Building a Sample Application Using JGo Beans

The JGo Package 73 Copyright Northwoods Software

follows:

 private void createSashForm() {

 sashForm = new SashForm(sShell, SWT.BORDER);

 createSashForm1();

 createJGoView();

 jGoOverview.setObserved(jGoView);

 int weights[] = new int[2];

 weights[0] = 30;

 weights[1] = 70;

 sashForm.setWeights(weights);

 }

Build and run the program. Drag and drop two JGoBasicNodes onto the JGoView.

Create a new link by dragging a link from the port of one JGoBasicNode to the port of

the other. The results should appear as follows:

At this point we have already created a simple application illustrating some of the default

behaviors supported by JGo, including drag and drop, selection, and multiple selection.

Nodes can be created by dragging from the palette and dropping onto the main view, or

by control-copying selected nodes. Links can be created by dragging a link between

ports on the objects.

Add Event Listeners

By adding event listeners, we can further modify the default behavior of the application

and react to end-user interaction.

We’ll begin by adding a documentChanged event listener on the JGoView. This event

listener will be called in response to any modification of the JGoDocument or any of the

JGo User Guide

74

JGoObjects contained in the document, including creation and deletion of JGoObjects.

We will modify any link as it is created to add an arrowhead.

For convenience, start by inserting the following lines at the top of

SampleAppSWT.java:

import com.nwoods.jgo.*;

import com.nwoods.jgo.layout.*;

import com.nwoods.jgo.svg.*;

import org.eclipse.widgets.*;

import org.eclipse.swt.events.*;

import java.io.*;

In the Eclipse Visual Editor, right click on jGoView in the right pane and select

“Events/Add Events…” to view the available event listeners. Click on

documentChanged and add an event listener. A documentChangedListener class will

be automatically created and the following empty method will be added to the

documentChangedListener:

 public void documentChanged(JGoDocumentEvent e) {

 }

We will add code to this method to look for new JGoLink objects being created, and to

modify the appearance of those links to include an arrowhead on the “to” end of the link

as follows:

 public void documentChanged(JGoDocumentEvent e) {

 switch (e.getHint()) {

 case JGoDocumentEvent.INSERTED:

 if (e.getJGoObject() instanceof JGoLink) {

 JGoLink link = (JGoLink)e.getJGoObject();

 link.setArrowHeads(false, true);

 }

 break;

 }

 }

Build and run the program again. Drag and drop two JGoBasicNodes onto the

JGoView. Create a new link by dragging a link from the port of one JGoBasicNode to

the port of the other. The results should appear as follows:

Building a Sample Application Using JGo Beans

The JGo Package 75 Copyright Northwoods Software

Next we’ll add a viewChanged event listener on the JGoView. This event listener will

be called in response to any modification of the JGoView, including any user interaction

with the objects shown in the view, such as selection, click, or double-click. We will

react to any double click on an object by displaying a message dialog identifying the

class of the object upon which the user double-clicked.

In the Eclipse Visual Editor, right click on jGoView in the right pane to select it for

editing and select “Events/Add Events…” to vew the available event listeners. Click on

viewChanged and add an event listener. A viewChangedListener class will be

automatically created and the following empty method will be added to the

viewChangedListener:

 public void viewChanged(JGoViewEvent e) {

 }

We will add code to this method to look for double-click events on JGoObjects or on the

background and display an appropriate message dialog as follows:

 public void viewChanged(JGoViewEvent e) {

 MessageBox b = new MessageBox(sShell);

 switch (e.getHint()) {

 case JGoViewEvent.DOUBLE_CLICKED:

 b.setMessage(e.getJGoObject()

 .getTopLevelObject().getClass().getName());

 b.open();

 break;

 case JGoViewEvent.BACKGROUND_DOUBLE_CLICKED:

 b.setMessage("Double-clicked on background");

JGo User Guide

76

 b.open();

 break;

 }

 }

Build and run the program again. Double-click on one of the nodes dragged to the

JGoView. The resulting window should appear as follows:

Next we’ll add a keyPressed event listener on the JGoView. This event listener will be

called in response to any key being pressed while the JGoView has focus. We will look

for the delete key being pressed and react by deleting the currently selected objects, if

any.

Right click on jGoView to select it for editing and select “Events/Add Events…” to view

the available event listeners. Click on keyPressed and add an event listener. A

keyAdapter class will be automatically created and the following empty method will be

added to the keyAdapter:

public void keyPressed(KeyEvent e) {

}

We then add code to this method to look for a Delete key being pressed and then remove

the currently selected objects from the document:

Public keyPressed(KeyEvent e) {

 switch (e.keyCode) {

 case SWT.DEL:

 jGoView.deleteSelection();

Building a Sample Application Using JGo Beans

The JGo Package 77 Copyright Northwoods Software

 break;

 }

}

Build and run the program again. Select several nodes and links. Use shift-click to

extend the selection, ctrl-click to toggle the selection, or use rubber band selection

(mouse down and drag to select all objects in enclosed rectangle). Press the Delete key to

delete all the selected objects.

 Customize the Palette

Naturally, we’ll want our own set of nodes to appear in the palette. The nodes displayed

when the showSampleItems property is set to true are primarily useful for boot strapping

and testing purposes when first creating an application. At this point we’re ready to set

this property to false and add our own instances of nodes.

The nodes we create will typically be subclasses of JGoNode or JGoArea. The

JGoArea class collects the various individual parts of our object (images, text, ports,

etc.) so that they behave as a single entity. We may wish to find an object class defined

in the com.nwoods.jgo or com.nwoods.jgo.examples package that has similar

appearance and behavior to that which we are attempting to create and either make a new

similar class or subclass in order to create our new node class. Looking at the

com.nwoods.jgo.examples.demo1SWT sample application can be helpful in order to

explore the various different node types and their behavior.

For simplicity in this example, we will create a subclass of JGoBasicNode that adds a

single additional integer field. We’ll begin by selecting File/New/Class in the Eclipse

editor. Specify the same Source Folder and Package you have used for the rest of the

sample application. Specify “SampleNode” for the name of the new class. Specify

“com.nwoods.jgo.JGoBasicNode” as the name of the superclass. You can then fill in the

body of this class as follows:

 import com.nwoods.jgo.*;

 public class SampleNode extends JGoBasicNode {

 public SampleNode() {

 }

 public SampleNode(String label) {

 super(label);

 }

 public int getIntVal(){

 return myInt;

 }

 public void setIntVal(int iVal){

 myInt = iVal;

 }

 private int myInt;

JGo User Guide

78

 }

In the initialization code for the JGoPalette in the createJGoPalette() method of

SampleAppSWT we can now replace the line:

 jGoPalette1.setShowSampleItems(true);

with the following code to create three different colored instances of our new

SampleNode class:

 // jGoPalette.setShowSampleItems(true);

 SampleNode node1 = new SampleNode("Blue Node");

 node1.setBrush(JGoBrush.makeStockBrush(JGoBrush.ColorBlue));

 node1.setIntVal(1);

 SampleNode node2 = new SampleNode("Red Node");

 node2.setBrush(JGoBrush.makeStockBrush(JGoBrush.ColorRed));

 node2.setIntVal(2);

 SampleNode node3 = new SampleNode("Green Node");

 node3.setBrush(JGoBrush.makeStockBrush(JGoBrush.ColorGreen));

 node3.setIntVal(3);

 jGoPalette.getDocument().addObjectAtTail(node1);

 jGoPalette.getDocument().addObjectAtTail(node2);

 jGoPalette.getDocument().addObjectAtTail(node3);

 jGoPalette.layoutItems(); jGoPalette.layoutItems();

We’ll also modify the message that’s displayed when our user double-clicks on a node to

display the “myInt” value added by our SampleNode subclass by modifying the

viewChanged() event handler as follows:

 public void viewChanged(JGoViewEvent e) {

 MessageBox b = new MessageBox(sShell);

 switch (e.getHint()) {

 case JGoViewEvent.DOUBLE_CLICKED:

 JGoObject obj = (JGoObject)e.getJGoObject()

 .getTopLevelObject();

 if (obj instanceof SampleNode) {

 SampleNode node = (SampleNode)obj;

 b.setMessage(node.getText() + " "

 + Integer.toString(node.getIntVal()));

 }

 else {

 b.setMessage(e.getJGoObject()

 .getTopLevelObject().getClass().getName());

 }

Building a Sample Application Using JGo Beans

The JGo Package 79 Copyright Northwoods Software

 b.open();

 break;

 case JGoViewEvent.BACKGROUND_DOUBLE_CLICKED:

 b.setMessage("Double-clicked on background");

 b.open();

 break;

 }

 }

Build and run the program again. Double-click on one of the nodes dragged to the

JGoView. The resulting window should appear as follows:

Note that the integer value displayed for the blue node is 0 rather than 1. This is because

a new copy of the SampleNode is created when it is dropped in the JGoView window.

By default, JGo will make a copy of an object whenever that object is:

 involved in a drag and drop operation

 involved in a clipboard operation

The objects are copied by invoking the virtual JGoObject.copyObject method. Because

we have created our own SampleNode class and have added a data member to that class,

we must override SampleNode.copyObject to copy the additional data as follows:

 public JGoObject copyObject(JGoCopyEnvironment env) {

 SampleNode newobj = (SampleNode)super.copyObject(env);

 newobj.myInt = myInt;

 return newobj;

 }

Build and run the program again. Double-click on one of the nodes dragged to the

JGoView. The resulting window should appear as follows:

JGo User Guide

80

Add Clipboard Support

Next we’ll add a menu bar to the sample application. We’ll create a Menu called mb and

populate it with clipboard commands. Add the following code after the creation of the

sShell Shell in the createSShell() method:

 // Create menu bar

 Menu mb = new Menu(sShell, SWT.BAR);

 sShell.setMenuBar(mb);

 // Create File menu

 MenuItem miFile = new MenuItem(mb, SWT.CASCADE);

 Menu fileMenu = new Menu(sShell, SWT.DROP_DOWN);

 miFile.setMenu(fileMenu);

 miFile.setText("&File");

 // Create Edit menu

 MenuItem miEdit = new MenuItem(mb, SWT.CASCADE);

 Menu editMenu = new Menu(sShell, SWT.DROP_DOWN);

 miEdit.setMenu(editMenu);

 miEdit.setText("Edit");

 // Create Edit menu items

 MenuItem miCopy = new MenuItem(editMenu, SWT.NONE);

 miCopy.setText("Copy");

 MenuItem miCut = new MenuItem(editMenu, SWT.NONE);

 miCut.setText("Cut");

 MenuItem miPaste = new MenuItem(editMenu, SWT.NONE);

 miPaste.setText("Paste");

Building a Sample Application Using JGo Beans

The JGo Package 81 Copyright Northwoods Software

The resulting window should appear as follows:

Next we’ll add SelectionAdapter event listeners for the “Copy”, “Cut”, and “Paste”

menu items. These event listeners will be called in response to the user selecting these

commands from the menu.

Add the following code to the menu creation code:

 // Add Menu event handlers

 miCopy.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 jGoView.copy();

 }

 });

 miCut.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 jGoView.cut();

 }

 });

 miPaste.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 jGoView.paste();

 }

 });

JGo User Guide

82

Build and run the program again. Select several nodes and links. Select the “Copy” or

“Cut” command to move the selected items to the clipboard. Select the “Paste” operation

to create new copies of the items on the clipboard. Note that the pasted items are initially

created in the same relative location they were in when copied to the clipboard. Also

note that when you double-click on the pasted objects, the integer value associated with

the SampleNode objects are preserved. The same copyObject method that we

implemented to support copying the additional data members in our SampleNode class

for drag and drop operations also works for clipboard operations.

Add Undo/Redo Support

We’ll start by adding the menu items for undo and redo to the menu bar by adding the

following code to the createSShell() method:

 MenuItem miUndo = new MenuItem(editMenu, SWT.NONE);

 miUndo.setText("Undo");

 MenuItem miRedo = new MenuItem(editMenu, SWT.NONE);

 miRedo.setText("Redo");

 The updated menu bar should appear as follows:

Just as before, we now add the selectionAdapter event listeners for these commands:

 miUndo.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 jGoView.getDocument().undo();

 }

Building a Sample Application Using JGo Beans

The JGo Package 83 Copyright Northwoods Software

 });

 miRedo.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 jGoView.getDocument().redo();

 }

 });

We must also add a JGoUndoManager to the JGoDocument in order to control the

undo and redo operations. We will simply add a default JGoUndoManager in the

initialization code for jGoView (the createJGoView() method) as follows:

JGoUndoManager undoManager = new JGoUndoManager();

jGoView.getDocument().setUndoManager(undoManager);

Build and run the program again. Perform several operations, such as drag and drop, link

nodes, drag nodes from one location to another. Verify that the “Undo” and “Redo”

menu items faithfully undo and redo these operations.

Because our sample application does not yet support any modifications to our

SampleNode data member (myInt) after the object has been added to the JGoDocument,

there is no need to track changes to this item or save or restore its previous values.

However, in the interests of a more robust example, let us assume that in the future we

wish to allow changes to this value and that all such changes will occur as a result of

calling SampleNode.setIntVal(int iVal). We would then need to define the following

methods in SampleNode to track changes to this value and modify the value during undo

and redo operations:

 public void setIntVal(int iVal){

 int oldVal = myInt;

 if (oldVal != iVal) {

 myInt = iVal;

 // Signal state change to support undo/redo

 update(IntValChanged, oldVal, null);

 }

 }

 public void copyNewValueForRedo(JGoDocumentChangedEdit e)

 {

 // Copy the current state before doing the undo so it can

 // be reset in a future redo operation

 switch (e.getFlags()) {

 case IntValChanged:

 e.setNewValueInt(myInt);

 return;

 default:

 super.copyNewValueForRedo(e);

 return;

JGo User Guide

84

 }

 }

 public void changeValue(JGoDocumentChangedEdit e, boolean undo)

 {

 // Actually perform the undo or redo operation

 switch (e.getFlags()) {

 case IntValChanged:

 setIntVal(e.getValueInt(undo));

 return;

 default:

 super.changeValue(e, undo);

 return;

 }

 }

 public static final int IntValChanged = JGoDocumentEvent.LAST +

 10000;

Add Auto-layout Support

In the section entitled “Register the JGo Beans with the Development Environment”, we

added the com.nwoods.jgo.layout package to the libraries required by this sample

application. This optional package is required for auto-layout support. For more details

on the auto-layout package and different layout options, refer to the “JGo Layout User

Guide”.

We’ll start by adding the menu item for auto-layout to the menu bar by adding the

following code to the createSShell() method:

 MenuItem miLayout = new MenuItem(editMenu, SWT.NONE);

 miLayout.setText("Layout");

The updated menu bar should appear as follows:

Building a Sample Application Using JGo Beans

The JGo Package 85 Copyright Northwoods Software

Just as before, we now add the selectionAdapter event listeners for these commands.

We will add code to this method to perform a layered, directed graph layout of the nodes

displayed in the JGoView. We accomplish this by first constructing a

com.nwoods.jgo.layout.JGoLayeredDigraphAutoLayout object, passing the

JGoDocument to the constructor so that a JGoNetwork of nodes and links can be

automatically created for us. We then specify property values for layout direction, layer

spacing, and column spacing. Finally, we call performLayout() to cause the layout

operation to actually take place as follows:

 miLayout.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 JGoLayeredDigraphAutoLayout layout =

 new JGoLayeredDigraphAutoLayout(jGoView.getDocument());

 layout.setDirectionOption(

 JGoLayeredDigraphAutoLayout.LD_DIRECTION_RIGHT);

 layout.setLayerSpacing(10);

 layout.setColumnSpacing(10);

 layout.performLayout();

 }

 });

Build and run the program again. Create a network of nodes and links and select the

“Edit/Layout” option from the menu. The resulting window may appear as follows:

JGo User Guide

86

Add XML/SVG Serialization Support

In the section entitled “Register the JGo Beans with the Development Environment”, we

added the com.nwoods.jgo.svg package to the libraries required by this sample

application. This optional package is required for serialization to and from the extended

SVG XML document type. Refer to the “Serialization” section of “JGoDocument” in the

“JGoDocument and JGoObject Details” chapter for more information on this topic.

We’ll start by adding the menu items for auto-layout to the menu bar by adding the

following code to the createSShell() method:

 MenuItem miSave = new MenuItem(fileMenu, SWT.NONE);

 miSave.setText("Save...");

 MenuItem miRestore = new MenuItem(fileMenu, SWT.NONE);

 miRestore.setText("Open...");

The updated menu bar should appear as follows:

Building a Sample Application Using JGo Beans

The JGo Package 87 Copyright Northwoods Software

Just as before, we now add the selectionAdapter event listeners for these commands.

We will add code to these methods to save and restore the graph shown in the JGoView

to and from XML documents. The XML document format used is an extension of the

SVG (Scalable Vector Graphics) XML document type. We will use a FileDialog object

to identify the path of the file to be read or written, and create a FileInputStream or

FileOutputStream associated with that file. Finally, we will create an instance of

com.nwoods.jgo.svg.DefaultDocument and call the SVGReadDoc or SVGWriteDoc

methods to read or write the extended SVG document. The resulting code is as follows:

 miSave.addSelectionListener(new SelectionAdapter() {

 public void widgetSelected(SelectionEvent event) {

 FileDialog fd = new FileDialog(sShell, SWT.SAVE);

 String file = fd.open();

 if (file != null) {

 try {

 FileOutputStream fstream = new FileOutputStream(file);

 DefaultDocument svgDomDoc = new DefaultDocument();

 svgDomDoc.SVGWriteDoc(fstream, jGoView.getDocument());

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 });

 miRestore.addSelectionListener(new SelectionAdapter() {

JGo User Guide

88

 public void widgetSelected(SelectionEvent event) {

 FileDialog fd = new FileDialog(sShell, SWT.OPEN);

 String file = fd.open();

 if (file != null) {

 try {

 FileInputStream fstream = new FileInputStream(file);

 DefaultDocument svgDomDoc = new DefaultDocument();

 svgDomDoc.SVGReadDoc(fstream, jGoView.getDocument());

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 });

Build and run the program again. Create a network of nodes and links and select the

“File/Save…” option from the menu. Verify that the output file can be read back into the

sample application using the “File/Open…” option from the menu.

At this point, the JGo graph is being successfully serialized to and from a file on disk, but

our extensions to JGo are not. In particular, our SampleNode subclass of

JGoBasicNode is not being saved correctly. When the file is read back into our sample

application, all the nodes in our graph have been recreated as JGoBasicNodes rather than

our SampleNode subclass. We can see this by double clicking on any node in the

diagram. Instead of seeing the message pane for a SampleNode object (“Blue Node 1”,

for example) we see the generic message used for all other object types that simply shows

the class name of the double clicked object (“com.nwoods.jgo.JGoBasicNode” for

example).

We need to override JGoObject.SVGWriteObject and JGoObject.SVGReadObject in

order to cause our subclass to be saved, and restored properly. In SVGWriteObject we

call createJGoClassElement to create an XML element corresponding to our subclass.

The class name passed to this element must be a fully qualified class name. This class

name will be used to recreate an instance of our subclass when reading the file back in, so

it important to make sure this name is entered correctly. We use the setAttribute method

to add an attribute called “intval” to this element and use it to save the value of our only

data member.

When reading the file back in with SVGReadObject, use the getAttribute method to

retrieve our data member value.

In both SVGReadObject and SVGWriteObject, we must remember to call super()

to allow our superclasses to save and restore their data. The resulting code is as follows:

 public void SVGWriteObject(DomDoc svgDoc, DomElement

 jGoElementGroup)

 {

Building a Sample Application Using JGo Beans

The JGo Package 89 Copyright Northwoods Software

 // Add SampleNode element

 DomElement sampleNode = svgDoc.createJGoClassElement(

 "com.nwoods.jgo.examples.sampleappSWT.SampleNode",

 jGoElementGroup);

 sampleNode.setAttribute("intval", Integer.toString(myInt));

 // Have superclass add to the JGoObject group

 super.SVGWriteObject(svgDoc, jGoElementGroup);

 }

 public DomNode SVGReadObject(DomDoc svgDoc, JGoDocument jGoDoc,

 DomElement svgElement, DomElement jGoChildElement)

 {

 if (jGoChildElement != null) {

 // This is a SampleNode element

 myInt = Integer.parseInt(jGoChildElement.getAttribute("intval"));

 super.SVGReadObject(svgDoc, jGoDoc, svgElement,

 jGoChildElement.getNextSiblingJGoClassElement());

 }

 return svgElement.getNextSibling();

 }

Build and run the program again. Create a network of nodes and links and select the

“File/Save…” option from the menu. Verify that the output file can be read back into the

sample application using the “File/Open…” option from the menu. Also verify that

double-clicking on the restored nodes displays the correctly restored value for the intVal

property of each SampleNode.

The output file can be viewed as using an SVG viewer, an XML viewer, or simply using

a standard text editor. The portion of the extended SVG XML output relating to our

SampleNode subclass of JGoBasicNode is as follows:

<JGoClass class="com.nwoods.jgo.examples.SampleNode" intval="1"/>

